Activations of deep convolutional neural networks are aligned with gamma band activity of human visual cortex View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Ilya Kuzovkin, Raul Vicente, Mathilde Petton, Jean-Philippe Lachaux, Monica Baciu, Philippe Kahane, Sylvain Rheims, Juan R. Vidal, Jaan Aru

ABSTRACT

Recent advances in the field of artificial intelligence have revealed principles about neural processing, in particular about vision. Previous work demonstrated a direct correspondence between the hierarchy of the human visual areas and layers of deep convolutional neural networks (DCNN) trained on visual object recognition. We use DCNN to investigate which frequency bands correlate with feature transformations of increasing complexity along the ventral visual pathway. By capitalizing on intracranial depth recordings from 100 patients we assess the alignment between the DCNN and signals at different frequency bands. We find that gamma activity (30-70 Hz) matches the increasing complexity of visual feature representations in DCNN. These findings show that the activity of the DCNN captures the essential characteristics of biological object recognition not only in space and time, but also in the frequency domain. These results demonstrate the potential that artificial intelligence algorithms have in advancing our understanding of the brain. More... »

PAGES

107

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s42003-018-0110-y

DOI

http://dx.doi.org/10.1038/s42003-018-0110-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105982890

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30271987


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Tartu", 
          "id": "https://www.grid.ac/institutes/grid.10939.32", 
          "name": [
            "Computational Neuroscience Lab, Institute of Computer Science, University of Tartu, 51005, Tartu, Estonia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuzovkin", 
        "givenName": "Ilya", 
        "id": "sg:person.010375324633.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010375324633.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tartu", 
          "id": "https://www.grid.ac/institutes/grid.10939.32", 
          "name": [
            "Computational Neuroscience Lab, Institute of Computer Science, University of Tartu, 51005, Tartu, Estonia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vicente", 
        "givenName": "Raul", 
        "id": "sg:person.01112530264.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112530264.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Claude Bernard University Lyon 1", 
          "id": "https://www.grid.ac/institutes/grid.7849.2", 
          "name": [
            "INSERM U1028, CNRS UMR5292, Brain Dynamics and Cognition Team, Lyon Neuroscience Research Center, 69500, Bron, France", 
            "Universit\u00e9 Claude Bernard, Lyon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petton", 
        "givenName": "Mathilde", 
        "id": "sg:person.015126662531.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015126662531.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Claude Bernard University Lyon 1", 
          "id": "https://www.grid.ac/institutes/grid.7849.2", 
          "name": [
            "INSERM U1028, CNRS UMR5292, Brain Dynamics and Cognition Team, Lyon Neuroscience Research Center, 69500, Bron, France", 
            "Universit\u00e9 Claude Bernard, Lyon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lachaux", 
        "givenName": "Jean-Philippe", 
        "id": "sg:person.015047357407.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015047357407.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "University Grenoble Alpes, LPNC, F-38040, Grenoble, France", 
            "CNRS, LPNC UMR 5105, F38040, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baciu", 
        "givenName": "Monica", 
        "id": "sg:person.01256410671.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256410671.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "H\u00f4pital Albert Michallon", 
          "id": "https://www.grid.ac/institutes/grid.413746.3", 
          "name": [
            "Inserm, U1216, F-38000, Grenoble, France", 
            "Neurology Department, CHU de Grenoble, H\u00f4pital Michallon, F-38000, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kahane", 
        "givenName": "Philippe", 
        "id": "sg:person.01052635133.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052635133.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospices Civils de Lyon", 
          "id": "https://www.grid.ac/institutes/grid.413852.9", 
          "name": [
            "INSERM U1028, CNRS UMR5292, TIGER Team, Lyon Neuroscience Research Center, 69500, Bron, France", 
            "Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, 69500, Bron, France", 
            "Epilepsy Institute, 69500, Bron, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rheims", 
        "givenName": "Sylvain", 
        "id": "sg:person.01205512041.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205512041.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Catholic University of Lyon", 
          "id": "https://www.grid.ac/institutes/grid.448695.2", 
          "name": [
            "University Grenoble Alpes, LPNC, F-38040, Grenoble, France", 
            "CNRS, LPNC UMR 5105, F38040, Grenoble, France", 
            "Catholic University of Lyon, 69002, Lyon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vidal", 
        "givenName": "Juan R.", 
        "id": "sg:person.01026322654.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026322654.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tartu", 
          "id": "https://www.grid.ac/institutes/grid.10939.32", 
          "name": [
            "Computational Neuroscience Lab, Institute of Computer Science, University of Tartu, 51005, Tartu, Estonia", 
            "Department of Penal Law, School of Law, University of Tartu, 10119, Tallinn, Estonia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aru", 
        "givenName": "Jaan", 
        "id": "sg:person.01166431455.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166431455.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/nimg.2001.1037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000469150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/neuro.06.004.2008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001986745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2012.01.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002388132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2015.09.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002780012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.86.5.1698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003412871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2004.11.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003959084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0959-4388(93)90203-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004054072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/036475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005354287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/036475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005354287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/036475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005354287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.4748-07.2008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007028969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnhum.2010.00195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007769643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0193(1999)8:4<194::aid-hbm4>3.0.co;2-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008071763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-015-0816-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009767488", 
          "https://doi.org/10.1007/s11263-015-0816-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177730491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011120195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.1000610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011925971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn.4244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015195293", 
          "https://doi.org/10.1038/nn.4244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1003915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015293875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2003.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019572247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1403112111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021339188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/jocn.2006.18.11.1850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021967088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2009.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023810641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tics.2005.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024645919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tics.2005.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024645919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2016.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025830740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.5023-14.2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029407884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2015.12.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029645663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.neuro.27.070203.144220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029958256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhv114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032038560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10590-1_53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032233097", 
          "https://doi.org/10.1007/978-3-319-10590-1_53"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2014.12.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032653190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2014.12.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032653190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1364-6613(99)01299-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034181354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep27755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036702724", 
          "https://doi.org/10.1038/srep27755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0896-6273(00)80821-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038107317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1402773111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038971765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-neuro-062111-150444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040574786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tics.2004.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042254174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.ne.18.030195.003011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042520100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-vision-082114-035447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043775244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/11.4.287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045431971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.2041-09.2009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051139802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2647868.2654889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052031051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1961.10482090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058299626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.57199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061100303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.19-13-05435.1999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074479759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.17-02-00722.1997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083027526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/118091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085109016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/118091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085109016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/118091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085109016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2017.07.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090684844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/201764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092196687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/201764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092196687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/201764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092196687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.24006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100992242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.0388-18.2018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105573040"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Recent advances in the field of artificial intelligence have revealed principles about neural processing, in particular about vision. Previous work demonstrated a direct correspondence between the hierarchy of the human visual areas and layers of deep convolutional neural networks (DCNN) trained on visual object recognition. We use DCNN to investigate which frequency bands correlate with feature transformations of increasing complexity along the ventral visual pathway. By capitalizing on intracranial depth recordings from 100 patients we assess the alignment between the DCNN and signals at different frequency bands. We find that gamma activity (30-70\u2009Hz) matches the increasing complexity of visual feature representations in DCNN. These findings show that the activity of the DCNN captures the essential characteristics of biological object recognition not only in space and time, but also in the frequency domain. These results demonstrate the potential that artificial intelligence algorithms have in advancing our understanding of the brain.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s42003-018-0110-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6384338", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4885758", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6576103", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4884397", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1300829", 
        "issn": [
          "2399-3642"
        ], 
        "name": "Communications Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "Activations of deep convolutional neural networks are aligned with gamma band activity of human visual cortex", 
    "pagination": "107", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "80ca64b39a45fc419f120b6c122aaec4480fc6c50dd609c2d86430c2c4629ba4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30271987"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101719179"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s42003-018-0110-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105982890"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s42003-018-0110-y", 
      "https://app.dimensions.ai/details/publication/pub.1105982890"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000548.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s42003-018-0110-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s42003-018-0110-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s42003-018-0110-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s42003-018-0110-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s42003-018-0110-y'


 

This table displays all metadata directly associated to this object as RDF triples.

303 TRIPLES      21 PREDICATES      77 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s42003-018-0110-y schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N72e75afc2a184009b99d489b0b138076
4 schema:citation sg:pub.10.1007/978-3-319-10590-1_53
5 sg:pub.10.1007/s11263-015-0816-y
6 sg:pub.10.1038/nn.4244
7 sg:pub.10.1038/srep27755
8 https://doi.org/10.1002/(sici)1097-0193(1999)8:4<194::aid-hbm4>3.0.co;2-c
9 https://doi.org/10.1002/hbm.24006
10 https://doi.org/10.1006/nimg.2001.1037
11 https://doi.org/10.1016/0959-4388(93)90203-b
12 https://doi.org/10.1016/j.jneumeth.2003.10.009
13 https://doi.org/10.1016/j.neuroimage.2004.11.052
14 https://doi.org/10.1016/j.neuroimage.2016.10.001
15 https://doi.org/10.1016/j.neuroimage.2017.07.018
16 https://doi.org/10.1016/j.neuron.2009.11.001
17 https://doi.org/10.1016/j.neuron.2012.01.010
18 https://doi.org/10.1016/j.neuron.2014.12.018
19 https://doi.org/10.1016/j.neuron.2015.09.034
20 https://doi.org/10.1016/j.neuron.2015.12.018
21 https://doi.org/10.1016/j.tics.2004.06.006
22 https://doi.org/10.1016/j.tics.2005.08.011
23 https://doi.org/10.1016/s0896-6273(00)80821-1
24 https://doi.org/10.1016/s1364-6613(99)01299-1
25 https://doi.org/10.1073/pnas.1402773111
26 https://doi.org/10.1073/pnas.1403112111
27 https://doi.org/10.1073/pnas.86.5.1698
28 https://doi.org/10.1080/01621459.1961.10482090
29 https://doi.org/10.1093/cercor/11.4.287
30 https://doi.org/10.1093/cercor/bhv114
31 https://doi.org/10.1101/036475
32 https://doi.org/10.1101/118091
33 https://doi.org/10.1101/201764
34 https://doi.org/10.1109/18.57199
35 https://doi.org/10.1145/2647868.2654889
36 https://doi.org/10.1146/annurev-neuro-062111-150444
37 https://doi.org/10.1146/annurev-vision-082114-035447
38 https://doi.org/10.1146/annurev.ne.18.030195.003011
39 https://doi.org/10.1146/annurev.neuro.27.070203.144220
40 https://doi.org/10.1162/jocn.2006.18.11.1850
41 https://doi.org/10.1214/aoms/1177730491
42 https://doi.org/10.1371/journal.pbio.1000610
43 https://doi.org/10.1371/journal.pcbi.1003915
44 https://doi.org/10.1523/jneurosci.0388-18.2018
45 https://doi.org/10.1523/jneurosci.17-02-00722.1997
46 https://doi.org/10.1523/jneurosci.19-13-05435.1999
47 https://doi.org/10.1523/jneurosci.2041-09.2009
48 https://doi.org/10.1523/jneurosci.4748-07.2008
49 https://doi.org/10.1523/jneurosci.5023-14.2015
50 https://doi.org/10.3389/fnhum.2010.00195
51 https://doi.org/10.3389/neuro.06.004.2008
52 schema:datePublished 2018-12
53 schema:datePublishedReg 2018-12-01
54 schema:description Recent advances in the field of artificial intelligence have revealed principles about neural processing, in particular about vision. Previous work demonstrated a direct correspondence between the hierarchy of the human visual areas and layers of deep convolutional neural networks (DCNN) trained on visual object recognition. We use DCNN to investigate which frequency bands correlate with feature transformations of increasing complexity along the ventral visual pathway. By capitalizing on intracranial depth recordings from 100 patients we assess the alignment between the DCNN and signals at different frequency bands. We find that gamma activity (30-70 Hz) matches the increasing complexity of visual feature representations in DCNN. These findings show that the activity of the DCNN captures the essential characteristics of biological object recognition not only in space and time, but also in the frequency domain. These results demonstrate the potential that artificial intelligence algorithms have in advancing our understanding of the brain.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree false
58 schema:isPartOf N273badfb25e441daadff7c76bc340f8e
59 Nbacd77b60f8845978e2df681da21e1e5
60 sg:journal.1300829
61 schema:name Activations of deep convolutional neural networks are aligned with gamma band activity of human visual cortex
62 schema:pagination 107
63 schema:productId N051bb82e61764948af92bd7c1980feba
64 N13d2a794ac3f4c999d7809d25ccb8294
65 N6652f17c33764951a970f9e8ab84e70d
66 Ncb1f4637b56240e2b1ec82ca00163e66
67 Nd7ede72236d5456691ec0488a4f7b208
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105982890
69 https://doi.org/10.1038/s42003-018-0110-y
70 schema:sdDatePublished 2019-04-10T17:37
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N39c6e25c0003477ba942df21ef08a9ca
73 schema:url https://www.nature.com/articles/s42003-018-0110-y
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N051bb82e61764948af92bd7c1980feba schema:name pubmed_id
78 schema:value 30271987
79 rdf:type schema:PropertyValue
80 N13d2a794ac3f4c999d7809d25ccb8294 schema:name doi
81 schema:value 10.1038/s42003-018-0110-y
82 rdf:type schema:PropertyValue
83 N1b11c0431f0c4c83ba62e0e3aa275ac1 rdf:first sg:person.01166431455.48
84 rdf:rest rdf:nil
85 N1d2b2aeaf9ac4ecc866a1cfff52913b0 rdf:first sg:person.01256410671.93
86 rdf:rest N20e69c2a68eb4c3e9b7534c031d738f4
87 N20e69c2a68eb4c3e9b7534c031d738f4 rdf:first sg:person.01052635133.33
88 rdf:rest N29b5b63b13424a5d9bf9e18acc69546a
89 N273badfb25e441daadff7c76bc340f8e schema:volumeNumber 1
90 rdf:type schema:PublicationVolume
91 N29b5b63b13424a5d9bf9e18acc69546a rdf:first sg:person.01205512041.52
92 rdf:rest N848b4bbfa3e140dba13aab5949856913
93 N39c6e25c0003477ba942df21ef08a9ca schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N56872eddfc9b40b493bfac0213f3ce0c rdf:first sg:person.015126662531.48
96 rdf:rest Ne79a2445383c405f85e5241f3c196f7e
97 N6652f17c33764951a970f9e8ab84e70d schema:name nlm_unique_id
98 schema:value 101719179
99 rdf:type schema:PropertyValue
100 N72e75afc2a184009b99d489b0b138076 rdf:first sg:person.010375324633.40
101 rdf:rest Nb5e56be101b3413ba462a9e102c1d0a1
102 N848b4bbfa3e140dba13aab5949856913 rdf:first sg:person.01026322654.40
103 rdf:rest N1b11c0431f0c4c83ba62e0e3aa275ac1
104 Nb5e56be101b3413ba462a9e102c1d0a1 rdf:first sg:person.01112530264.73
105 rdf:rest N56872eddfc9b40b493bfac0213f3ce0c
106 Nbacd77b60f8845978e2df681da21e1e5 schema:issueNumber 1
107 rdf:type schema:PublicationIssue
108 Ncb1f4637b56240e2b1ec82ca00163e66 schema:name dimensions_id
109 schema:value pub.1105982890
110 rdf:type schema:PropertyValue
111 Nd7ede72236d5456691ec0488a4f7b208 schema:name readcube_id
112 schema:value 80ca64b39a45fc419f120b6c122aaec4480fc6c50dd609c2d86430c2c4629ba4
113 rdf:type schema:PropertyValue
114 Ne79a2445383c405f85e5241f3c196f7e rdf:first sg:person.015047357407.47
115 rdf:rest N1d2b2aeaf9ac4ecc866a1cfff52913b0
116 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
117 schema:name Information and Computing Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
120 schema:name Artificial Intelligence and Image Processing
121 rdf:type schema:DefinedTerm
122 sg:grant.4884397 http://pending.schema.org/fundedItem sg:pub.10.1038/s42003-018-0110-y
123 rdf:type schema:MonetaryGrant
124 sg:grant.4885758 http://pending.schema.org/fundedItem sg:pub.10.1038/s42003-018-0110-y
125 rdf:type schema:MonetaryGrant
126 sg:grant.6384338 http://pending.schema.org/fundedItem sg:pub.10.1038/s42003-018-0110-y
127 rdf:type schema:MonetaryGrant
128 sg:grant.6576103 http://pending.schema.org/fundedItem sg:pub.10.1038/s42003-018-0110-y
129 rdf:type schema:MonetaryGrant
130 sg:journal.1300829 schema:issn 2399-3642
131 schema:name Communications Biology
132 rdf:type schema:Periodical
133 sg:person.01026322654.40 schema:affiliation https://www.grid.ac/institutes/grid.448695.2
134 schema:familyName Vidal
135 schema:givenName Juan R.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026322654.40
137 rdf:type schema:Person
138 sg:person.010375324633.40 schema:affiliation https://www.grid.ac/institutes/grid.10939.32
139 schema:familyName Kuzovkin
140 schema:givenName Ilya
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010375324633.40
142 rdf:type schema:Person
143 sg:person.01052635133.33 schema:affiliation https://www.grid.ac/institutes/grid.413746.3
144 schema:familyName Kahane
145 schema:givenName Philippe
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052635133.33
147 rdf:type schema:Person
148 sg:person.01112530264.73 schema:affiliation https://www.grid.ac/institutes/grid.10939.32
149 schema:familyName Vicente
150 schema:givenName Raul
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112530264.73
152 rdf:type schema:Person
153 sg:person.01166431455.48 schema:affiliation https://www.grid.ac/institutes/grid.10939.32
154 schema:familyName Aru
155 schema:givenName Jaan
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166431455.48
157 rdf:type schema:Person
158 sg:person.01205512041.52 schema:affiliation https://www.grid.ac/institutes/grid.413852.9
159 schema:familyName Rheims
160 schema:givenName Sylvain
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205512041.52
162 rdf:type schema:Person
163 sg:person.01256410671.93 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
164 schema:familyName Baciu
165 schema:givenName Monica
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256410671.93
167 rdf:type schema:Person
168 sg:person.015047357407.47 schema:affiliation https://www.grid.ac/institutes/grid.7849.2
169 schema:familyName Lachaux
170 schema:givenName Jean-Philippe
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015047357407.47
172 rdf:type schema:Person
173 sg:person.015126662531.48 schema:affiliation https://www.grid.ac/institutes/grid.7849.2
174 schema:familyName Petton
175 schema:givenName Mathilde
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015126662531.48
177 rdf:type schema:Person
178 sg:pub.10.1007/978-3-319-10590-1_53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032233097
179 https://doi.org/10.1007/978-3-319-10590-1_53
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s11263-015-0816-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1009767488
182 https://doi.org/10.1007/s11263-015-0816-y
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nn.4244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015195293
185 https://doi.org/10.1038/nn.4244
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/srep27755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036702724
188 https://doi.org/10.1038/srep27755
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1002/(sici)1097-0193(1999)8:4<194::aid-hbm4>3.0.co;2-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1008071763
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1002/hbm.24006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100992242
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1006/nimg.2001.1037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000469150
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/0959-4388(93)90203-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1004054072
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.jneumeth.2003.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019572247
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.neuroimage.2004.11.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003959084
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.neuroimage.2016.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025830740
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.neuroimage.2017.07.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090684844
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.neuron.2009.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023810641
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.neuron.2012.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002388132
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.neuron.2014.12.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032653190
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.neuron.2015.09.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002780012
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.neuron.2015.12.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029645663
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.tics.2004.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042254174
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.tics.2005.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024645919
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/s0896-6273(00)80821-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038107317
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/s1364-6613(99)01299-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034181354
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1073/pnas.1402773111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038971765
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1073/pnas.1403112111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021339188
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1073/pnas.86.5.1698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003412871
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1080/01621459.1961.10482090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058299626
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1093/cercor/11.4.287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045431971
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1093/cercor/bhv114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032038560
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1101/036475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005354287
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1101/118091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085109016
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1101/201764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092196687
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1109/18.57199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061100303
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1145/2647868.2654889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052031051
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1146/annurev-neuro-062111-150444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040574786
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1146/annurev-vision-082114-035447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043775244
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1146/annurev.ne.18.030195.003011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042520100
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1146/annurev.neuro.27.070203.144220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029958256
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1162/jocn.2006.18.11.1850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021967088
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1214/aoms/1177730491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011120195
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1371/journal.pbio.1000610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011925971
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1371/journal.pcbi.1003915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015293875
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1523/jneurosci.0388-18.2018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105573040
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1523/jneurosci.17-02-00722.1997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083027526
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1523/jneurosci.19-13-05435.1999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074479759
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1523/jneurosci.2041-09.2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051139802
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1523/jneurosci.4748-07.2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007028969
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1523/jneurosci.5023-14.2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029407884
273 rdf:type schema:CreativeWork
274 https://doi.org/10.3389/fnhum.2010.00195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007769643
275 rdf:type schema:CreativeWork
276 https://doi.org/10.3389/neuro.06.004.2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001986745
277 rdf:type schema:CreativeWork
278 https://www.grid.ac/institutes/grid.10939.32 schema:alternateName University of Tartu
279 schema:name Computational Neuroscience Lab, Institute of Computer Science, University of Tartu, 51005, Tartu, Estonia
280 Department of Penal Law, School of Law, University of Tartu, 10119, Tallinn, Estonia
281 rdf:type schema:Organization
282 https://www.grid.ac/institutes/grid.413746.3 schema:alternateName Hôpital Albert Michallon
283 schema:name Inserm, U1216, F-38000, Grenoble, France
284 Neurology Department, CHU de Grenoble, Hôpital Michallon, F-38000, Grenoble, France
285 rdf:type schema:Organization
286 https://www.grid.ac/institutes/grid.413852.9 schema:alternateName Hospices Civils de Lyon
287 schema:name Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, 69500, Bron, France
288 Epilepsy Institute, 69500, Bron, France
289 INSERM U1028, CNRS UMR5292, TIGER Team, Lyon Neuroscience Research Center, 69500, Bron, France
290 rdf:type schema:Organization
291 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
292 schema:name CNRS, LPNC UMR 5105, F38040, Grenoble, France
293 University Grenoble Alpes, LPNC, F-38040, Grenoble, France
294 rdf:type schema:Organization
295 https://www.grid.ac/institutes/grid.448695.2 schema:alternateName Catholic University of Lyon
296 schema:name CNRS, LPNC UMR 5105, F38040, Grenoble, France
297 Catholic University of Lyon, 69002, Lyon, France
298 University Grenoble Alpes, LPNC, F-38040, Grenoble, France
299 rdf:type schema:Organization
300 https://www.grid.ac/institutes/grid.7849.2 schema:alternateName Claude Bernard University Lyon 1
301 schema:name INSERM U1028, CNRS UMR5292, Brain Dynamics and Cognition Team, Lyon Neuroscience Research Center, 69500, Bron, France
302 Université Claude Bernard, Lyon, France
303 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...