Reversible writing of high-mobility and high-carrier-density doping patterns in two-dimensional van der Waals heterostructures View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-01-20

AUTHORS

Wu Shi, Salman Kahn, Lili Jiang, Sheng-Yu Wang, Hsin-Zon Tsai, Dillon Wong, Takashi Taniguchi, Kenji Watanabe, Feng Wang, Michael F. Crommie, Alex Zettl

ABSTRACT

A key feature of two-dimensional materials is that the sign and concentration of their carriers can be externally controlled with techniques such as electrostatic gating. However, conventional electrostatic gating has limitations, including a maximum carrier density set by the dielectric breakdown, and ionic liquid gating and direct chemical doping also suffer from drawbacks. Here, we show that an electron-beam-induced doping technique can be used to reversibly write high-resolution doping patterns in hexagonal boron nitride-encapsulated graphene and molybdenum disulfide (MoS2) van der Waals heterostructures. The doped MoS2 device exhibits an order of magnitude decrease of subthreshold swing compared with the device before doping, whereas the doped graphene devices demonstrate a previously inaccessible regime of high carrier concentration and high mobility, even at room temperature. We also show that the approach can be used to write high-quality p–n junctions and nanoscale doping patterns, illustrating that the technique can create nanoscale circuitry in van der Waals heterostructures. More... »

PAGES

99-105

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41928-019-0351-x

DOI

http://dx.doi.org/10.1038/s41928-019-0351-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1124191227


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kavli Energy NanoSciences Institute at the University of California and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Physics, University of California, Berkeley, CA, USA", 
            "Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA", 
            "Kavli Energy NanoSciences Institute at the University of California and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Wu", 
        "id": "sg:person.01007327247.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007327247.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kavli Energy NanoSciences Institute at the University of California and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Physics, University of California, Berkeley, CA, USA", 
            "Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA", 
            "Kavli Energy NanoSciences Institute at the University of California and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kahn", 
        "givenName": "Salman", 
        "id": "sg:person.0732611261.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732611261.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kavli Energy NanoSciences Institute at the University of California and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Physics, University of California, Berkeley, CA, USA", 
            "Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA", 
            "Kavli Energy NanoSciences Institute at the University of California and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Lili", 
        "id": "sg:person.01263743725.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263743725.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of California, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Physics, University of California, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Sheng-Yu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kavli Energy NanoSciences Institute at the University of California and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Physics, University of California, Berkeley, CA, USA", 
            "Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA", 
            "Kavli Energy NanoSciences Institute at the University of California and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsai", 
        "givenName": "Hsin-Zon", 
        "id": "sg:person.01137602530.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137602530.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kavli Energy NanoSciences Institute at the University of California and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Physics, University of California, Berkeley, CA, USA", 
            "Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA", 
            "Kavli Energy NanoSciences Institute at the University of California and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wong", 
        "givenName": "Dillon", 
        "id": "sg:person.01167636773.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167636773.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science, Tsukuba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "National Institute for Materials Science, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taniguchi", 
        "givenName": "Takashi", 
        "id": "sg:person.0765715521.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765715521.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science, Tsukuba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "National Institute for Materials Science, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanabe", 
        "givenName": "Kenji", 
        "id": "sg:person.010575643400.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010575643400.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kavli Energy NanoSciences Institute at the University of California and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Physics, University of California, Berkeley, CA, USA", 
            "Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA", 
            "Kavli Energy NanoSciences Institute at the University of California and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Feng", 
        "id": "sg:person.01066611756.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066611756.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kavli Energy NanoSciences Institute at the University of California and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Physics, University of California, Berkeley, CA, USA", 
            "Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA", 
            "Kavli Energy NanoSciences Institute at the University of California and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crommie", 
        "givenName": "Michael F.", 
        "id": "sg:person.01046572263.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046572263.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kavli Energy NanoSciences Institute at the University of California and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Physics, University of California, Berkeley, CA, USA", 
            "Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA", 
            "Kavli Energy NanoSciences Institute at the University of California and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zettl", 
        "givenName": "Alex", 
        "id": "sg:person.0766475362.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766475362.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ncomms12391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037105439", 
          "https://doi.org/10.1038/ncomms12391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep12534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007636491", 
          "https://doi.org/10.1038/srep12534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2014.60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019038150", 
          "https://doi.org/10.1038/nnano.2014.60"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2015.188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023927397", 
          "https://doi.org/10.1038/nnano.2015.188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep12014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021348736", 
          "https://doi.org/10.1038/srep12014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-08776-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091344472", 
          "https://doi.org/10.1038/s41598-017-08776-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007452581", 
          "https://doi.org/10.1038/nphys2102"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-01-20", 
    "datePublishedReg": "2020-01-20", 
    "description": "A key feature of two-dimensional materials is that the sign and concentration of their carriers can be externally controlled with techniques such as electrostatic gating. However, conventional electrostatic gating has limitations, including a maximum carrier density set by the dielectric breakdown, and ionic liquid gating and direct chemical doping also suffer from drawbacks. Here, we show that an electron-beam-induced doping technique can be used to reversibly write high-resolution doping patterns in hexagonal boron nitride-encapsulated graphene and molybdenum disulfide (MoS2) van der Waals heterostructures. The doped MoS2 device exhibits an order of magnitude decrease of subthreshold swing compared with the device before doping, whereas the doped graphene devices demonstrate a previously inaccessible regime of high carrier concentration and high mobility, even at room temperature. We also show that the approach can be used to write high-quality p\u2013n junctions and nanoscale doping patterns, illustrating that the technique can create nanoscale circuitry in van der Waals heterostructures.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41928-019-0351-x", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7703757", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4314170", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1299897", 
        "issn": [
          "2520-1131"
        ], 
        "name": "Nature Electronics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "doping patterns", 
      "van der Waals", 
      "electrostatic gating", 
      "two-dimensional van der Waals", 
      "der Waals", 
      "conventional electrostatic gating", 
      "two-dimensional materials", 
      "maximum carrier density", 
      "high carrier concentration", 
      "nanoscale circuitry", 
      "graphene devices", 
      "ionic liquid gating", 
      "doping technique", 
      "MoS2 devices", 
      "chemical doping", 
      "n junction", 
      "subthreshold swing", 
      "reversible writing", 
      "carrier concentration", 
      "liquid gating", 
      "high mobility", 
      "inaccessible regimes", 
      "carrier density", 
      "room temperature", 
      "Waals", 
      "devices", 
      "doping", 
      "dielectric breakdown", 
      "graphene", 
      "magnitude decrease", 
      "gating", 
      "technique", 
      "carriers", 
      "circuitry", 
      "drawbacks", 
      "key features", 
      "swing", 
      "mobility", 
      "temperature", 
      "materials", 
      "regime", 
      "density", 
      "concentration", 
      "junction", 
      "limitations", 
      "order", 
      "breakdown", 
      "approach", 
      "patterns", 
      "decrease", 
      "features", 
      "signs", 
      "writing"
    ], 
    "name": "Reversible writing of high-mobility and high-carrier-density doping patterns in two-dimensional van der Waals heterostructures", 
    "pagination": "99-105", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1124191227"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41928-019-0351-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41928-019-0351-x", 
      "https://app.dimensions.ai/details/publication/pub.1124191227"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_862.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41928-019-0351-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41928-019-0351-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41928-019-0351-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41928-019-0351-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41928-019-0351-x'


 

This table displays all metadata directly associated to this object as RDF triples.

218 TRIPLES      21 PREDICATES      84 URIs      69 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41928-019-0351-x schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N3f1df577a15b4259ae44d12bbd2c6e85
4 schema:citation sg:pub.10.1038/ncomms12391
5 sg:pub.10.1038/nnano.2014.60
6 sg:pub.10.1038/nnano.2015.188
7 sg:pub.10.1038/nphys2102
8 sg:pub.10.1038/s41598-017-08776-3
9 sg:pub.10.1038/srep12014
10 sg:pub.10.1038/srep12534
11 schema:datePublished 2020-01-20
12 schema:datePublishedReg 2020-01-20
13 schema:description A key feature of two-dimensional materials is that the sign and concentration of their carriers can be externally controlled with techniques such as electrostatic gating. However, conventional electrostatic gating has limitations, including a maximum carrier density set by the dielectric breakdown, and ionic liquid gating and direct chemical doping also suffer from drawbacks. Here, we show that an electron-beam-induced doping technique can be used to reversibly write high-resolution doping patterns in hexagonal boron nitride-encapsulated graphene and molybdenum disulfide (MoS2) van der Waals heterostructures. The doped MoS2 device exhibits an order of magnitude decrease of subthreshold swing compared with the device before doping, whereas the doped graphene devices demonstrate a previously inaccessible regime of high carrier concentration and high mobility, even at room temperature. We also show that the approach can be used to write high-quality p–n junctions and nanoscale doping patterns, illustrating that the technique can create nanoscale circuitry in van der Waals heterostructures.
14 schema:genre article
15 schema:isAccessibleForFree true
16 schema:isPartOf N32fca7a122ee40988b901fff51206cd1
17 N78989ece8eb742768b9547f01f82fcb3
18 sg:journal.1299897
19 schema:keywords MoS2 devices
20 Waals
21 approach
22 breakdown
23 carrier concentration
24 carrier density
25 carriers
26 chemical doping
27 circuitry
28 concentration
29 conventional electrostatic gating
30 decrease
31 density
32 der Waals
33 devices
34 dielectric breakdown
35 doping
36 doping patterns
37 doping technique
38 drawbacks
39 electrostatic gating
40 features
41 gating
42 graphene
43 graphene devices
44 high carrier concentration
45 high mobility
46 inaccessible regimes
47 ionic liquid gating
48 junction
49 key features
50 limitations
51 liquid gating
52 magnitude decrease
53 materials
54 maximum carrier density
55 mobility
56 n junction
57 nanoscale circuitry
58 order
59 patterns
60 regime
61 reversible writing
62 room temperature
63 signs
64 subthreshold swing
65 swing
66 technique
67 temperature
68 two-dimensional materials
69 two-dimensional van der Waals
70 van der Waals
71 writing
72 schema:name Reversible writing of high-mobility and high-carrier-density doping patterns in two-dimensional van der Waals heterostructures
73 schema:pagination 99-105
74 schema:productId N46a9c213ba9043c9904a3245c7baba36
75 N9d16b8064d9649eea2210477b23fd002
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124191227
77 https://doi.org/10.1038/s41928-019-0351-x
78 schema:sdDatePublished 2022-12-01T06:41
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher N8a1b374580dd4be38837fe2c6279ebc4
81 schema:url https://doi.org/10.1038/s41928-019-0351-x
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N1b766a6a73f74c68be246155699d0b86 rdf:first sg:person.01263743725.36
86 rdf:rest Na09df7d0ca414cb6badfdb40e9383387
87 N245ccc64c12541779e2c0c3f02bd0d69 rdf:first sg:person.01167636773.07
88 rdf:rest N457db3a3cd144021bdfe7a721ea6e6a5
89 N32fca7a122ee40988b901fff51206cd1 schema:issueNumber 2
90 rdf:type schema:PublicationIssue
91 N3f1df577a15b4259ae44d12bbd2c6e85 rdf:first sg:person.01007327247.10
92 rdf:rest N81bc3bc6a68e44acace7c5a7d999684b
93 N457db3a3cd144021bdfe7a721ea6e6a5 rdf:first sg:person.0765715521.02
94 rdf:rest Nf74c36295ec340948c6c57f0581f42df
95 N46a9c213ba9043c9904a3245c7baba36 schema:name dimensions_id
96 schema:value pub.1124191227
97 rdf:type schema:PropertyValue
98 N72a3af751d8143f7927a673fc281abc3 rdf:first sg:person.01066611756.19
99 rdf:rest N8bbea761994143bfb950c10a41e5a97c
100 N78989ece8eb742768b9547f01f82fcb3 schema:volumeNumber 3
101 rdf:type schema:PublicationVolume
102 N81bc3bc6a68e44acace7c5a7d999684b rdf:first sg:person.0732611261.03
103 rdf:rest N1b766a6a73f74c68be246155699d0b86
104 N8a1b374580dd4be38837fe2c6279ebc4 schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 N8bbea761994143bfb950c10a41e5a97c rdf:first sg:person.01046572263.84
107 rdf:rest Nca4da500c2ad40a2a0f667f5ac07b335
108 N9d16b8064d9649eea2210477b23fd002 schema:name doi
109 schema:value 10.1038/s41928-019-0351-x
110 rdf:type schema:PropertyValue
111 Na09df7d0ca414cb6badfdb40e9383387 rdf:first Nda10fd1acc264f338abbe19d37b4b9a7
112 rdf:rest Ne602a5817ba74701ba3c9acbc30178a3
113 Nca4da500c2ad40a2a0f667f5ac07b335 rdf:first sg:person.0766475362.52
114 rdf:rest rdf:nil
115 Nda10fd1acc264f338abbe19d37b4b9a7 schema:affiliation grid-institutes:grid.47840.3f
116 schema:familyName Wang
117 schema:givenName Sheng-Yu
118 rdf:type schema:Person
119 Ne602a5817ba74701ba3c9acbc30178a3 rdf:first sg:person.01137602530.65
120 rdf:rest N245ccc64c12541779e2c0c3f02bd0d69
121 Nf74c36295ec340948c6c57f0581f42df rdf:first sg:person.010575643400.34
122 rdf:rest N72a3af751d8143f7927a673fc281abc3
123 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
124 schema:name Engineering
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
127 schema:name Materials Engineering
128 rdf:type schema:DefinedTerm
129 sg:grant.4314170 http://pending.schema.org/fundedItem sg:pub.10.1038/s41928-019-0351-x
130 rdf:type schema:MonetaryGrant
131 sg:grant.7703757 http://pending.schema.org/fundedItem sg:pub.10.1038/s41928-019-0351-x
132 rdf:type schema:MonetaryGrant
133 sg:journal.1299897 schema:issn 2520-1131
134 schema:name Nature Electronics
135 schema:publisher Springer Nature
136 rdf:type schema:Periodical
137 sg:person.01007327247.10 schema:affiliation grid-institutes:grid.184769.5
138 schema:familyName Shi
139 schema:givenName Wu
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007327247.10
141 rdf:type schema:Person
142 sg:person.01046572263.84 schema:affiliation grid-institutes:grid.184769.5
143 schema:familyName Crommie
144 schema:givenName Michael F.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046572263.84
146 rdf:type schema:Person
147 sg:person.010575643400.34 schema:affiliation grid-institutes:grid.21941.3f
148 schema:familyName Watanabe
149 schema:givenName Kenji
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010575643400.34
151 rdf:type schema:Person
152 sg:person.01066611756.19 schema:affiliation grid-institutes:grid.184769.5
153 schema:familyName Wang
154 schema:givenName Feng
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066611756.19
156 rdf:type schema:Person
157 sg:person.01137602530.65 schema:affiliation grid-institutes:grid.184769.5
158 schema:familyName Tsai
159 schema:givenName Hsin-Zon
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137602530.65
161 rdf:type schema:Person
162 sg:person.01167636773.07 schema:affiliation grid-institutes:grid.184769.5
163 schema:familyName Wong
164 schema:givenName Dillon
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167636773.07
166 rdf:type schema:Person
167 sg:person.01263743725.36 schema:affiliation grid-institutes:grid.184769.5
168 schema:familyName Jiang
169 schema:givenName Lili
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263743725.36
171 rdf:type schema:Person
172 sg:person.0732611261.03 schema:affiliation grid-institutes:grid.184769.5
173 schema:familyName Kahn
174 schema:givenName Salman
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732611261.03
176 rdf:type schema:Person
177 sg:person.0765715521.02 schema:affiliation grid-institutes:grid.21941.3f
178 schema:familyName Taniguchi
179 schema:givenName Takashi
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765715521.02
181 rdf:type schema:Person
182 sg:person.0766475362.52 schema:affiliation grid-institutes:grid.184769.5
183 schema:familyName Zettl
184 schema:givenName Alex
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766475362.52
186 rdf:type schema:Person
187 sg:pub.10.1038/ncomms12391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037105439
188 https://doi.org/10.1038/ncomms12391
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nnano.2014.60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019038150
191 https://doi.org/10.1038/nnano.2014.60
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/nnano.2015.188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023927397
194 https://doi.org/10.1038/nnano.2015.188
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/nphys2102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007452581
197 https://doi.org/10.1038/nphys2102
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/s41598-017-08776-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091344472
200 https://doi.org/10.1038/s41598-017-08776-3
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/srep12014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021348736
203 https://doi.org/10.1038/srep12014
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/srep12534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007636491
206 https://doi.org/10.1038/srep12534
207 rdf:type schema:CreativeWork
208 grid-institutes:grid.184769.5 schema:alternateName Kavli Energy NanoSciences Institute at the University of California and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA
209 schema:name Department of Physics, University of California, Berkeley, CA, USA
210 Kavli Energy NanoSciences Institute at the University of California and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA
211 Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
212 rdf:type schema:Organization
213 grid-institutes:grid.21941.3f schema:alternateName National Institute for Materials Science, Tsukuba, Japan
214 schema:name National Institute for Materials Science, Tsukuba, Japan
215 rdf:type schema:Organization
216 grid-institutes:grid.47840.3f schema:alternateName Department of Physics, University of California, Berkeley, CA, USA
217 schema:name Department of Physics, University of California, Berkeley, CA, USA
218 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...