Optimally diverse communication channels in disordered environments with tuned randomness View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-01

AUTHORS

Philipp del Hougne, Mathias Fink, Geoffroy Lerosey

ABSTRACT

Perfect orthogonality can be imposed on wireless communication channels by using reconfigurable metasurfaces to tune the disorder of their propagation environment.

PAGES

36

Journal

TITLE

Nature Electronics

ISSUE

1

VOLUME

2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41928-018-0190-1

DOI

http://dx.doi.org/10.1038/s41928-018-0190-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111273972


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut de Physique de Nice", 
          "id": "https://www.grid.ac/institutes/grid.497397.7", 
          "name": [
            "Institut Langevin, CNRS UMR 7587, ESPCI Paris, PSL Research University, Paris, France", 
            "Institut de Physique de Nice, CNRS UMR 7010, Universit\u00e9 C\u00f4te d\u2019Azur, Nice, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "del Hougne", 
        "givenName": "Philipp", 
        "id": "sg:person.01160275005.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160275005.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Langevin Institute", 
          "id": "https://www.grid.ac/institutes/grid.488846.e", 
          "name": [
            "Institut Langevin, CNRS UMR 7587, ESPCI Paris, PSL Research University, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fink", 
        "givenName": "Mathias", 
        "id": "sg:person.01344540311.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344540311.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Greenerwave (France)", 
          "id": "https://www.grid.ac/institutes/grid.499248.a", 
          "name": [
            "Greenerwave, ESPCI Paris Incubator PC\u2019up, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lerosey", 
        "givenName": "Geoffroy", 
        "id": "sg:person.01024026410.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024026410.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1134824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001247189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1420510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001276929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/38/49/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001954900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/38/49/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001954900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ett.4460100604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003005768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/access.2016.2543525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003529247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.22.018881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003618253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008889222784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005549860", 
          "https://doi.org/10.1023/a:1008889222784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.056215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007370312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.056215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007370312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015759206", 
          "https://doi.org/10.1038/ncomms5876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.metmat.2007.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021456515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35053015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028519149", 
          "https://doi.org/10.1038/35053015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35053015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028519149", 
          "https://doi.org/10.1038/35053015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep06693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041964685", 
          "https://doi.org/10.1038/srep06693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044829126", 
          "https://doi.org/10.1038/ncomms1078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044829126", 
          "https://doi.org/10.1038/ncomms1078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optcom.2008.02.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048792737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1538-7305.1948.tb01338.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052867467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.017701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.017701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/22.798001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061126524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/49.730453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061177980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.920578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061180320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jlt.2013.2278809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061287230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jproc.2009.2014298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061297026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tap.2014.2382647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061502044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5451.287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062567993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.24.018631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065208455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1561/0100000001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068000260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.7.041053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093094090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.7.041053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093094090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.97.021801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100884957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.97.021801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100884957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsi.2018.2796305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101006182"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "Perfect orthogonality can be imposed on wireless communication channels by using reconfigurable metasurfaces to tune the disorder of their propagation environment.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41928-018-0190-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1299897", 
        "issn": [
          "2520-1131"
        ], 
        "name": "Nature Electronics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Optimally diverse communication channels in disordered environments with tuned randomness", 
    "pagination": "36", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "76f780398f148c64335fcc576f1558ae58a2f66ad15393c819e80b97cebb80f7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41928-018-0190-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111273972"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41928-018-0190-1", 
      "https://app.dimensions.ai/details/publication/pub.1111273972"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000320_0000000320/records_101396_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41928-018-0190-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41928-018-0190-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41928-018-0190-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41928-018-0190-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41928-018-0190-1'


 

This table displays all metadata directly associated to this object as RDF triples.

162 TRIPLES      20 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41928-018-0190-1 schema:author Naa2f231838c84164be3fe16a1603c849
2 schema:citation sg:pub.10.1023/a:1008889222784
3 sg:pub.10.1038/35053015
4 sg:pub.10.1038/ncomms1078
5 sg:pub.10.1038/ncomms5876
6 sg:pub.10.1038/srep06693
7 https://doi.org/10.1002/ett.4460100604
8 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
9 https://doi.org/10.1016/j.metmat.2007.02.003
10 https://doi.org/10.1016/j.optcom.2008.02.022
11 https://doi.org/10.1063/1.1420510
12 https://doi.org/10.1088/0305-4470/38/49/001
13 https://doi.org/10.1103/physreva.97.021801
14 https://doi.org/10.1103/physreve.71.056215
15 https://doi.org/10.1103/physrevlett.115.017701
16 https://doi.org/10.1103/physrevx.7.041053
17 https://doi.org/10.1109/22.798001
18 https://doi.org/10.1109/49.730453
19 https://doi.org/10.1109/5.920578
20 https://doi.org/10.1109/access.2016.2543525
21 https://doi.org/10.1109/jlt.2013.2278809
22 https://doi.org/10.1109/jproc.2009.2014298
23 https://doi.org/10.1109/tap.2014.2382647
24 https://doi.org/10.1109/tcsi.2018.2796305
25 https://doi.org/10.1126/science.1134824
26 https://doi.org/10.1126/science.287.5451.287
27 https://doi.org/10.1364/oe.22.018881
28 https://doi.org/10.1364/oe.24.018631
29 https://doi.org/10.1561/0100000001
30 schema:datePublished 2019-01
31 schema:datePublishedReg 2019-01-01
32 schema:description Perfect orthogonality can be imposed on wireless communication channels by using reconfigurable metasurfaces to tune the disorder of their propagation environment.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N7467b98c31244c358f398e4ccadef6b0
37 N8367304afd634923a75a6c27861f54bf
38 sg:journal.1299897
39 schema:name Optimally diverse communication channels in disordered environments with tuned randomness
40 schema:pagination 36
41 schema:productId N54d269d588dd4c25b74673eac8697c3d
42 N7046dbe66a5c4aed9290b97405d0c9df
43 Nde171ff34b914eb489b2f996c752a853
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111273972
45 https://doi.org/10.1038/s41928-018-0190-1
46 schema:sdDatePublished 2019-04-11T08:41
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Nfcb66dab6db24565a13ec0d265678a98
49 schema:url https://www.nature.com/articles/s41928-018-0190-1
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N54d269d588dd4c25b74673eac8697c3d schema:name readcube_id
54 schema:value 76f780398f148c64335fcc576f1558ae58a2f66ad15393c819e80b97cebb80f7
55 rdf:type schema:PropertyValue
56 N7046dbe66a5c4aed9290b97405d0c9df schema:name dimensions_id
57 schema:value pub.1111273972
58 rdf:type schema:PropertyValue
59 N7467b98c31244c358f398e4ccadef6b0 schema:volumeNumber 2
60 rdf:type schema:PublicationVolume
61 N764b87c140904136b4fc9499e25136de rdf:first sg:person.01344540311.65
62 rdf:rest N980172b7c908453e858b6243c01bc29a
63 N8367304afd634923a75a6c27861f54bf schema:issueNumber 1
64 rdf:type schema:PublicationIssue
65 N980172b7c908453e858b6243c01bc29a rdf:first sg:person.01024026410.16
66 rdf:rest rdf:nil
67 Naa2f231838c84164be3fe16a1603c849 rdf:first sg:person.01160275005.71
68 rdf:rest N764b87c140904136b4fc9499e25136de
69 Nde171ff34b914eb489b2f996c752a853 schema:name doi
70 schema:value 10.1038/s41928-018-0190-1
71 rdf:type schema:PropertyValue
72 Nfcb66dab6db24565a13ec0d265678a98 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 sg:journal.1299897 schema:issn 2520-1131
75 schema:name Nature Electronics
76 rdf:type schema:Periodical
77 sg:person.01024026410.16 schema:affiliation https://www.grid.ac/institutes/grid.499248.a
78 schema:familyName Lerosey
79 schema:givenName Geoffroy
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024026410.16
81 rdf:type schema:Person
82 sg:person.01160275005.71 schema:affiliation https://www.grid.ac/institutes/grid.497397.7
83 schema:familyName del Hougne
84 schema:givenName Philipp
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160275005.71
86 rdf:type schema:Person
87 sg:person.01344540311.65 schema:affiliation https://www.grid.ac/institutes/grid.488846.e
88 schema:familyName Fink
89 schema:givenName Mathias
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344540311.65
91 rdf:type schema:Person
92 sg:pub.10.1023/a:1008889222784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005549860
93 https://doi.org/10.1023/a:1008889222784
94 rdf:type schema:CreativeWork
95 sg:pub.10.1038/35053015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028519149
96 https://doi.org/10.1038/35053015
97 rdf:type schema:CreativeWork
98 sg:pub.10.1038/ncomms1078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044829126
99 https://doi.org/10.1038/ncomms1078
100 rdf:type schema:CreativeWork
101 sg:pub.10.1038/ncomms5876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015759206
102 https://doi.org/10.1038/ncomms5876
103 rdf:type schema:CreativeWork
104 sg:pub.10.1038/srep06693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041964685
105 https://doi.org/10.1038/srep06693
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1002/ett.4460100604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003005768
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052867467
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.metmat.2007.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021456515
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.optcom.2008.02.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048792737
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1063/1.1420510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001276929
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1088/0305-4470/38/49/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001954900
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physreva.97.021801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100884957
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physreve.71.056215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007370312
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrevlett.115.017701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060763783
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physrevx.7.041053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093094090
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/22.798001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061126524
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/49.730453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061177980
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/5.920578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061180320
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/access.2016.2543525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003529247
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/jlt.2013.2278809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061287230
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/jproc.2009.2014298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061297026
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/tap.2014.2382647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061502044
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/tcsi.2018.2796305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101006182
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1126/science.1134824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001247189
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1126/science.287.5451.287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062567993
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1364/oe.22.018881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003618253
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1364/oe.24.018631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065208455
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1561/0100000001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068000260
152 rdf:type schema:CreativeWork
153 https://www.grid.ac/institutes/grid.488846.e schema:alternateName Langevin Institute
154 schema:name Institut Langevin, CNRS UMR 7587, ESPCI Paris, PSL Research University, Paris, France
155 rdf:type schema:Organization
156 https://www.grid.ac/institutes/grid.497397.7 schema:alternateName Institut de Physique de Nice
157 schema:name Institut Langevin, CNRS UMR 7587, ESPCI Paris, PSL Research University, Paris, France
158 Institut de Physique de Nice, CNRS UMR 7010, Université Côte d’Azur, Nice, France
159 rdf:type schema:Organization
160 https://www.grid.ac/institutes/grid.499248.a schema:alternateName Greenerwave (France)
161 schema:name Greenerwave, ESPCI Paris Incubator PC’up, Paris, France
162 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...