Three-dimensional integration of plasmonics and nanoelectronics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Yang Liu, Jiasen Zhang, Lian-Mao Peng

ABSTRACT

Optoelectronic integrated circuits can leverage the large bandwidth and low interconnect delay of optical communications. Developing a three-dimensional optoelectronic integrated circuit architecture could then provide increased integration density, improved operation speeds and decreased power consumption. However, the integration of photonics and electronics in 3D geometries is difficult due to conflicts in materials and fabrication methods. Plasmonics can help address the incompatibility of photonic and electronic circuits, but methods for the 3D integration of plasmonics and electronics on a single chip are limited. Here, we report a strategy for the three-dimensional integration of plasmonics and electronics using waveguide-fed slot antennas and carbon nanotube networks. Our low-temperature approach, which is compatible with complementary metal–oxide–semiconductor (CMOS) technology, is based on a metal engineering technique in which different metals with typical structures are used as different functional modules. Using this approach, we demonstrate a series of 3D integrated circuits including photovoltaic-type plasmonic unidirectional receivers, wavelength–polarization multiplexers, and receivers integrated with CMOS signal-processing circuits. Three-dimensional integrated circuits based on slot antennas and carbon nanotubes can combine plasmonics and electronics, and can be used to create unidirectional receivers and wavelength- and polarization-division multiplexing. More... »

PAGES

644-651

References to SciGraph publications

  • 2009-05. Electrical detection of confined gap plasmons in metal–insulator–metal waveguides in NATURE PHOTONICS
  • 2018-05. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions in NATURE
  • 2014-07. Metal-film-assisted ultra-clean transfer of single-walled carbon nanotubes in NANO RESEARCH
  • 2015-12. Single-chip microprocessor that communicates directly using light in NATURE
  • 2017-07. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip in NATURE
  • 2007-10. Carbon-based electronics in NATURE NANOTECHNOLOGY
  • 2016-09. Van der Waals heterostructures and devices in NATURE REVIEWS MATERIALS
  • 2007-05. Efficient unidirectional nanoslit couplers for surface plasmons in NATURE PHYSICS
  • 2014-10. Electronics based on two-dimensional materials in NATURE NANOTECHNOLOGY
  • 2014-10. Photodetectors based on graphene, other two-dimensional materials and hybrid systems in NATURE NANOTECHNOLOGY
  • 2007. Plasmonics: Fundamentals and Applications in NONE
  • 2009-07. Near-field electrical detection of optical plasmons and single-plasmon sources in NATURE PHYSICS
  • 2017-06-08. Carbon nanotube-based three-dimensional monolithic optoelectronic integrated system in NATURE COMMUNICATIONS
  • 2016-02-09. The chips are down for Moore’s law in NATURE
  • 2014-06. Integrated germanium optical interconnects on silicon substrates in NATURE PHOTONICS
  • 2007-06. A roadmap for nanophotonics in NATURE PHOTONICS
  • 2015-12. Hybrid graphene plasmonic waveguide modulators in NATURE COMMUNICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41928-018-0176-z

    DOI

    http://dx.doi.org/10.1038/s41928-018-0176-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1110537245


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Electrical and Electronic Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Peking University", 
              "id": "https://www.grid.ac/institutes/grid.11135.37", 
              "name": [
                "Academy for Advanced Interdisciplinary Studies and Key Laboratory for the Physics and Chemistry of Nanodevices, Peking University, Beijing, China", 
                "Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Yang", 
            "id": "sg:person.014545003741.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014545003741.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Collaborative Innovation Center of Quantum Matter", 
              "id": "https://www.grid.ac/institutes/grid.495569.2", 
              "name": [
                "State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing, China", 
                "Collaborative Innovation Center of Quantum Matter, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Jiasen", 
            "id": "sg:person.0631704662.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631704662.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Peking University", 
              "id": "https://www.grid.ac/institutes/grid.11135.37", 
              "name": [
                "Academy for Advanced Interdisciplinary Studies and Key Laboratory for the Physics and Chemistry of Nanodevices, Peking University, Beijing, China", 
                "Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Peng", 
            "givenName": "Lian-Mao", 
            "id": "sg:person.010515521607.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010515521607.58"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1126/science.1186905", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002399909"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1186905", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002399909"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002496997", 
              "https://doi.org/10.1038/nphys1284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/aenm.201600522", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004189748"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2014.215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008640603", 
              "https://doi.org/10.1038/nnano.2014.215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/natrevmats.2016.42", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011627837", 
              "https://doi.org/10.1038/natrevmats.2016.42"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adom.201500529", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012316848"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2007.84", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013020154", 
              "https://doi.org/10.1038/nphoton.2007.84"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1114849", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014492053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.101.043902", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016209515"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.101.043902", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016209515"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2014.73", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016539442", 
              "https://doi.org/10.1038/nphoton.2014.73"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl050723m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018322950"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl050723m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018322950"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1233746", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021034767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2014.207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022224835", 
              "https://doi.org/10.1038/nnano.2014.207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2009.47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023199585", 
              "https://doi.org/10.1038/nphoton.2009.47"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2009.47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023199585", 
              "https://doi.org/10.1038/nphoton.2009.47"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys584", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023396985", 
              "https://doi.org/10.1038/nphys584"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys584", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023396985", 
              "https://doi.org/10.1038/nphys584"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/530144a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025242731", 
              "https://doi.org/10.1038/530144a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl204257g", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026043901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pssb.200669137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027339479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/0-387-37825-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028255731", 
              "https://doi.org/10.1007/0-387-37825-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/0-387-37825-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028255731", 
              "https://doi.org/10.1007/0-387-37825-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature16454", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030858133", 
              "https://doi.org/10.1038/nature16454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2007.300", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035164187", 
              "https://doi.org/10.1038/nnano.2007.300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mattod.2014.07.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036315826"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12274-014-0460-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040991783", 
              "https://doi.org/10.1007/s12274-014-0460-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms9846", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041866289", 
              "https://doi.org/10.1038/ncomms9846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2008/807457", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049173971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acsnano.6b05047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055138175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acsnano.6b05047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055138175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl403954h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056220481"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl501124s", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056220761"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl803079s", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056221665"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl803079s", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056221665"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4729552", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058053315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.75.075409", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060620243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.75.075409", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060620243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mc.2015.376", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061389249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.16.003420", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065187211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/optica.3.000042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065248104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1557/mrs.2012.170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067966559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aaj1628", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079396829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.7b00564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084536870"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms15649", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085932088", 
              "https://doi.org/10.1038/ncomms15649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature22994", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090350170", 
              "https://doi.org/10.1038/nature22994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature22994", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090350170", 
              "https://doi.org/10.1038/nature22994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.25.018092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090823109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/sciadv.1701456", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092310644"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0471213748", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098661498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0471213748", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098661498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-018-0129-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103996438", 
              "https://doi.org/10.1038/s41586-018-0129-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9783527617746", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109492237"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "Optoelectronic integrated circuits can leverage the large bandwidth and low interconnect delay of optical communications. Developing a three-dimensional optoelectronic integrated circuit architecture could then provide increased integration density, improved operation speeds and decreased power consumption. However, the integration of photonics and electronics in 3D geometries is difficult due to conflicts in materials and fabrication methods. Plasmonics can help address the incompatibility of photonic and electronic circuits, but methods for the 3D integration of plasmonics and electronics on a single chip are limited. Here, we report a strategy for the three-dimensional integration of plasmonics and electronics using waveguide-fed slot antennas and carbon nanotube networks. Our low-temperature approach, which is compatible with complementary metal\u2013oxide\u2013semiconductor (CMOS) technology, is based on a metal engineering technique in which different metals with typical structures are used as different functional modules. Using this approach, we demonstrate a series of 3D integrated circuits including photovoltaic-type plasmonic unidirectional receivers, wavelength\u2013polarization multiplexers, and receivers integrated with CMOS signal-processing circuits. Three-dimensional integrated circuits based on slot antennas and carbon nanotubes can combine plasmonics and electronics, and can be used to create unidirectional receivers and wavelength- and polarization-division multiplexing.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41928-018-0176-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1299897", 
            "issn": [
              "2520-1131"
            ], 
            "name": "Nature Electronics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "1"
          }
        ], 
        "name": "Three-dimensional integration of plasmonics and nanoelectronics", 
        "pagination": "644-651", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "58fc4cc6df900f00899e71875079e1a880b5e78fdbba132d60ce5da7d279f434"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41928-018-0176-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1110537245"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41928-018-0176-z", 
          "https://app.dimensions.ai/details/publication/pub.1110537245"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000293_0000000293/records_12017_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41928-018-0176-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41928-018-0176-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41928-018-0176-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41928-018-0176-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41928-018-0176-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    228 TRIPLES      21 PREDICATES      71 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41928-018-0176-z schema:about anzsrc-for:09
    2 anzsrc-for:0906
    3 schema:author N51fbea2c76274d9a90aea4ab9e487ee2
    4 schema:citation sg:pub.10.1007/0-387-37825-1
    5 sg:pub.10.1007/s12274-014-0460-9
    6 sg:pub.10.1038/530144a
    7 sg:pub.10.1038/natrevmats.2016.42
    8 sg:pub.10.1038/nature16454
    9 sg:pub.10.1038/nature22994
    10 sg:pub.10.1038/ncomms15649
    11 sg:pub.10.1038/ncomms9846
    12 sg:pub.10.1038/nnano.2007.300
    13 sg:pub.10.1038/nnano.2014.207
    14 sg:pub.10.1038/nnano.2014.215
    15 sg:pub.10.1038/nphoton.2007.84
    16 sg:pub.10.1038/nphoton.2009.47
    17 sg:pub.10.1038/nphoton.2014.73
    18 sg:pub.10.1038/nphys1284
    19 sg:pub.10.1038/nphys584
    20 sg:pub.10.1038/s41586-018-0129-8
    21 https://doi.org/10.1002/0471213748
    22 https://doi.org/10.1002/9783527617746
    23 https://doi.org/10.1002/adom.201500529
    24 https://doi.org/10.1002/aenm.201600522
    25 https://doi.org/10.1002/pssb.200669137
    26 https://doi.org/10.1016/j.mattod.2014.07.008
    27 https://doi.org/10.1021/acs.nanolett.7b00564
    28 https://doi.org/10.1021/acsnano.6b05047
    29 https://doi.org/10.1021/nl050723m
    30 https://doi.org/10.1021/nl204257g
    31 https://doi.org/10.1021/nl403954h
    32 https://doi.org/10.1021/nl501124s
    33 https://doi.org/10.1021/nl803079s
    34 https://doi.org/10.1063/1.4729552
    35 https://doi.org/10.1103/physrevb.75.075409
    36 https://doi.org/10.1103/physrevlett.101.043902
    37 https://doi.org/10.1109/mc.2015.376
    38 https://doi.org/10.1126/sciadv.1701456
    39 https://doi.org/10.1126/science.1114849
    40 https://doi.org/10.1126/science.1186905
    41 https://doi.org/10.1126/science.1233746
    42 https://doi.org/10.1126/science.aaj1628
    43 https://doi.org/10.1155/2008/807457
    44 https://doi.org/10.1364/oe.16.003420
    45 https://doi.org/10.1364/oe.25.018092
    46 https://doi.org/10.1364/optica.3.000042
    47 https://doi.org/10.1557/mrs.2012.170
    48 schema:datePublished 2018-12
    49 schema:datePublishedReg 2018-12-01
    50 schema:description Optoelectronic integrated circuits can leverage the large bandwidth and low interconnect delay of optical communications. Developing a three-dimensional optoelectronic integrated circuit architecture could then provide increased integration density, improved operation speeds and decreased power consumption. However, the integration of photonics and electronics in 3D geometries is difficult due to conflicts in materials and fabrication methods. Plasmonics can help address the incompatibility of photonic and electronic circuits, but methods for the 3D integration of plasmonics and electronics on a single chip are limited. Here, we report a strategy for the three-dimensional integration of plasmonics and electronics using waveguide-fed slot antennas and carbon nanotube networks. Our low-temperature approach, which is compatible with complementary metal–oxide–semiconductor (CMOS) technology, is based on a metal engineering technique in which different metals with typical structures are used as different functional modules. Using this approach, we demonstrate a series of 3D integrated circuits including photovoltaic-type plasmonic unidirectional receivers, wavelength–polarization multiplexers, and receivers integrated with CMOS signal-processing circuits. Three-dimensional integrated circuits based on slot antennas and carbon nanotubes can combine plasmonics and electronics, and can be used to create unidirectional receivers and wavelength- and polarization-division multiplexing.
    51 schema:genre research_article
    52 schema:inLanguage en
    53 schema:isAccessibleForFree false
    54 schema:isPartOf Ncc5ef3ff68d74206be002a39ae8e8dcc
    55 Nf8783931ade24201aabed909a40a2c01
    56 sg:journal.1299897
    57 schema:name Three-dimensional integration of plasmonics and nanoelectronics
    58 schema:pagination 644-651
    59 schema:productId N3f82b0c3da1f4cc1b58e9a63e85964cb
    60 N504de126491449c588ae6ecdaf624787
    61 N797a53a8638940e7972f675cfa615bab
    62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110537245
    63 https://doi.org/10.1038/s41928-018-0176-z
    64 schema:sdDatePublished 2019-04-11T08:23
    65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    66 schema:sdPublisher Na544bd9f946f4bd4bb4477f195f860e1
    67 schema:url https://www.nature.com/articles/s41928-018-0176-z
    68 sgo:license sg:explorer/license/
    69 sgo:sdDataset articles
    70 rdf:type schema:ScholarlyArticle
    71 N3f82b0c3da1f4cc1b58e9a63e85964cb schema:name readcube_id
    72 schema:value 58fc4cc6df900f00899e71875079e1a880b5e78fdbba132d60ce5da7d279f434
    73 rdf:type schema:PropertyValue
    74 N504de126491449c588ae6ecdaf624787 schema:name doi
    75 schema:value 10.1038/s41928-018-0176-z
    76 rdf:type schema:PropertyValue
    77 N51fbea2c76274d9a90aea4ab9e487ee2 rdf:first sg:person.014545003741.93
    78 rdf:rest N9eee91c53348480faffbf5f630604faa
    79 N797a53a8638940e7972f675cfa615bab schema:name dimensions_id
    80 schema:value pub.1110537245
    81 rdf:type schema:PropertyValue
    82 N9eee91c53348480faffbf5f630604faa rdf:first sg:person.0631704662.07
    83 rdf:rest Nd7e0e8d20d4c4cbfb5c1f99964590c4f
    84 Na544bd9f946f4bd4bb4477f195f860e1 schema:name Springer Nature - SN SciGraph project
    85 rdf:type schema:Organization
    86 Ncc5ef3ff68d74206be002a39ae8e8dcc schema:volumeNumber 1
    87 rdf:type schema:PublicationVolume
    88 Nd7e0e8d20d4c4cbfb5c1f99964590c4f rdf:first sg:person.010515521607.58
    89 rdf:rest rdf:nil
    90 Nf8783931ade24201aabed909a40a2c01 schema:issueNumber 12
    91 rdf:type schema:PublicationIssue
    92 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Engineering
    94 rdf:type schema:DefinedTerm
    95 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Electrical and Electronic Engineering
    97 rdf:type schema:DefinedTerm
    98 sg:journal.1299897 schema:issn 2520-1131
    99 schema:name Nature Electronics
    100 rdf:type schema:Periodical
    101 sg:person.010515521607.58 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
    102 schema:familyName Peng
    103 schema:givenName Lian-Mao
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010515521607.58
    105 rdf:type schema:Person
    106 sg:person.014545003741.93 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
    107 schema:familyName Liu
    108 schema:givenName Yang
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014545003741.93
    110 rdf:type schema:Person
    111 sg:person.0631704662.07 schema:affiliation https://www.grid.ac/institutes/grid.495569.2
    112 schema:familyName Zhang
    113 schema:givenName Jiasen
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631704662.07
    115 rdf:type schema:Person
    116 sg:pub.10.1007/0-387-37825-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028255731
    117 https://doi.org/10.1007/0-387-37825-1
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/s12274-014-0460-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040991783
    120 https://doi.org/10.1007/s12274-014-0460-9
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1038/530144a schema:sameAs https://app.dimensions.ai/details/publication/pub.1025242731
    123 https://doi.org/10.1038/530144a
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1038/natrevmats.2016.42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011627837
    126 https://doi.org/10.1038/natrevmats.2016.42
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1038/nature16454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030858133
    129 https://doi.org/10.1038/nature16454
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1038/nature22994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090350170
    132 https://doi.org/10.1038/nature22994
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1038/ncomms15649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085932088
    135 https://doi.org/10.1038/ncomms15649
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1038/ncomms9846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041866289
    138 https://doi.org/10.1038/ncomms9846
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1038/nnano.2007.300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035164187
    141 https://doi.org/10.1038/nnano.2007.300
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1038/nnano.2014.207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022224835
    144 https://doi.org/10.1038/nnano.2014.207
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1038/nnano.2014.215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008640603
    147 https://doi.org/10.1038/nnano.2014.215
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1038/nphoton.2007.84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013020154
    150 https://doi.org/10.1038/nphoton.2007.84
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1038/nphoton.2009.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023199585
    153 https://doi.org/10.1038/nphoton.2009.47
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1038/nphoton.2014.73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016539442
    156 https://doi.org/10.1038/nphoton.2014.73
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1038/nphys1284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002496997
    159 https://doi.org/10.1038/nphys1284
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1038/nphys584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023396985
    162 https://doi.org/10.1038/nphys584
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1038/s41586-018-0129-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103996438
    165 https://doi.org/10.1038/s41586-018-0129-8
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1002/0471213748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661498
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1002/9783527617746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109492237
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1002/adom.201500529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012316848
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1002/aenm.201600522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004189748
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1002/pssb.200669137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027339479
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/j.mattod.2014.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036315826
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1021/acs.nanolett.7b00564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084536870
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1021/acsnano.6b05047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055138175
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1021/nl050723m schema:sameAs https://app.dimensions.ai/details/publication/pub.1018322950
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1021/nl204257g schema:sameAs https://app.dimensions.ai/details/publication/pub.1026043901
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1021/nl403954h schema:sameAs https://app.dimensions.ai/details/publication/pub.1056220481
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1021/nl501124s schema:sameAs https://app.dimensions.ai/details/publication/pub.1056220761
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1021/nl803079s schema:sameAs https://app.dimensions.ai/details/publication/pub.1056221665
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1063/1.4729552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058053315
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1103/physrevb.75.075409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060620243
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1103/physrevlett.101.043902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016209515
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1109/mc.2015.376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061389249
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1126/sciadv.1701456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092310644
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1126/science.1114849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014492053
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1126/science.1186905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002399909
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1126/science.1233746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021034767
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1126/science.aaj1628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079396829
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1155/2008/807457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049173971
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1364/oe.16.003420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065187211
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1364/oe.25.018092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090823109
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1364/optica.3.000042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065248104
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1557/mrs.2012.170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067966559
    220 rdf:type schema:CreativeWork
    221 https://www.grid.ac/institutes/grid.11135.37 schema:alternateName Peking University
    222 schema:name Academy for Advanced Interdisciplinary Studies and Key Laboratory for the Physics and Chemistry of Nanodevices, Peking University, Beijing, China
    223 Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing, China
    224 rdf:type schema:Organization
    225 https://www.grid.ac/institutes/grid.495569.2 schema:alternateName Collaborative Innovation Center of Quantum Matter
    226 schema:name Collaborative Innovation Center of Quantum Matter, Beijing, China
    227 State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing, China
    228 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...