Thermal sensors improve wrist-worn position tracking View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Jake J. Son, Jon C. Clucas, Curt White, Anirudh Krishnakumar, Joshua T. Vogelstein, Michael P. Milham, Arno Klein

ABSTRACT

Wearable devices provide a means of tracking hand position in relation to the head, but have mostly relied on wrist-worn inertial measurement unit sensors and proximity sensors, which are inadequate for identifying specific locations. This limits their utility for accurate and precise monitoring of behaviors or providing feedback to guide behaviors. A potential clinical application is monitoring body-focused repetitive behaviors (BFRBs), recurrent, injurious behaviors directed toward the body, such as nail biting and hair pulling, which are often misdiagnosed and undertreated. Here, we demonstrate that including thermal sensors achieves higher accuracy in position tracking when compared against inertial measurement unit and proximity sensor data alone. Our Tingle device distinguished between behaviors from six locations on the head across 39 adult participants, with high AUROC values (best was back of the head: median (1.0), median absolute deviation (0.0); worst was on the cheek: median (0.93), median absolute deviation (0.09)). This study presents preliminary evidence of the advantage of including thermal sensors for position tracking and the Tingle wearable device’s potential use in a wide variety of settings, including BFRB diagnosis and management. More... »

PAGES

15

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41746-019-0092-2

DOI

http://dx.doi.org/10.1038/s41746-019-0092-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112761568


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Child Mind Institute", 
          "id": "https://www.grid.ac/institutes/grid.428122.f", 
          "name": [
            "Center for the Developing Brain, Child Mind Institute, New York, NY, USA", 
            "MATTER Lab, Child Mind Institute, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Son", 
        "givenName": "Jake J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Child Mind Institute", 
          "id": "https://www.grid.ac/institutes/grid.428122.f", 
          "name": [
            "Center for the Developing Brain, Child Mind Institute, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Clucas", 
        "givenName": "Jon C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Child Mind Institute", 
          "id": "https://www.grid.ac/institutes/grid.428122.f", 
          "name": [
            "Center for the Developing Brain, Child Mind Institute, New York, NY, USA", 
            "MATTER Lab, Child Mind Institute, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "White", 
        "givenName": "Curt", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Centre de Recherches Interdisciplinaires (Center for Research and Interdisciplinarity), Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krishnakumar", 
        "givenName": "Anirudh", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vogelstein", 
        "givenName": "Joshua T.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nathan Kline Institute for Psychiatric Research", 
          "id": "https://www.grid.ac/institutes/grid.250263.0", 
          "name": [
            "Center for the Developing Brain, Child Mind Institute, New York, NY, USA", 
            "Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Milham", 
        "givenName": "Michael P.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Child Mind Institute", 
          "id": "https://www.grid.ac/institutes/grid.428122.f", 
          "name": [
            "MATTER Lab, Child Mind Institute, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klein", 
        "givenName": "Arno", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-0-387-79061-9_113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013848715", 
          "https://doi.org/10.1007/978-0-387-79061-9_113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpr.2013.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024689060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1997.9.8.1735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038140272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.brat.2008.06.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040112662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(96)00142-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044522995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fpsyt.2011.00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053588048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4088/jcp.v67n1207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072209681"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Wearable devices provide a means of tracking hand position in relation to the head, but have mostly relied on wrist-worn inertial measurement unit sensors and proximity sensors, which are inadequate for identifying specific locations. This limits their utility for accurate and precise monitoring of behaviors or providing feedback to guide behaviors. A potential clinical application is monitoring body-focused repetitive behaviors (BFRBs), recurrent, injurious behaviors directed toward the body, such as nail biting and hair pulling, which are often misdiagnosed and undertreated. Here, we demonstrate that including thermal sensors achieves higher accuracy in position tracking when compared against inertial measurement unit and proximity sensor data alone. Our Tingle device distinguished between behaviors from six locations on the head across 39 adult participants, with high AUROC values (best was back of the head: median (1.0), median absolute deviation (0.0); worst was on the cheek: median (0.93), median absolute deviation (0.09)). This study presents preliminary evidence of the advantage of including thermal sensors for position tracking and the Tingle wearable device\u2019s potential use in a wide variety of settings, including BFRB diagnosis and management.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1038/s41746-019-0092-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1300579", 
        "issn": [
          "2226-8561", 
          "2398-6352"
        ], 
        "name": "npj Digital Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Thermal sensors improve wrist-worn position tracking", 
    "pagination": "15", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4dcd9f21c824f9cadad9a0fa20c87f8089f529bdfcdb3f9c52cdefebfdda6227"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41746-019-0092-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112761568"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41746-019-0092-2", 
      "https://app.dimensions.ai/details/publication/pub.1112761568"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29197_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41746-019-0092-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41746-019-0092-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41746-019-0092-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41746-019-0092-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41746-019-0092-2'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41746-019-0092-2 schema:about anzsrc-for:09
2 anzsrc-for:0903
3 schema:author N0a9206e38f814a50bc2a90c2f5dbed9e
4 schema:citation sg:pub.10.1007/978-0-387-79061-9_113
5 https://doi.org/10.1016/j.brat.2008.06.013
6 https://doi.org/10.1016/j.cpr.2013.05.004
7 https://doi.org/10.1016/s0031-3203(96)00142-2
8 https://doi.org/10.1162/neco.1997.9.8.1735
9 https://doi.org/10.3389/fpsyt.2011.00001
10 https://doi.org/10.4088/jcp.v67n1207
11 schema:datePublished 2019-12
12 schema:datePublishedReg 2019-12-01
13 schema:description Wearable devices provide a means of tracking hand position in relation to the head, but have mostly relied on wrist-worn inertial measurement unit sensors and proximity sensors, which are inadequate for identifying specific locations. This limits their utility for accurate and precise monitoring of behaviors or providing feedback to guide behaviors. A potential clinical application is monitoring body-focused repetitive behaviors (BFRBs), recurrent, injurious behaviors directed toward the body, such as nail biting and hair pulling, which are often misdiagnosed and undertreated. Here, we demonstrate that including thermal sensors achieves higher accuracy in position tracking when compared against inertial measurement unit and proximity sensor data alone. Our Tingle device distinguished between behaviors from six locations on the head across 39 adult participants, with high AUROC values (best was back of the head: median (1.0), median absolute deviation (0.0); worst was on the cheek: median (0.93), median absolute deviation (0.09)). This study presents preliminary evidence of the advantage of including thermal sensors for position tracking and the Tingle wearable device’s potential use in a wide variety of settings, including BFRB diagnosis and management.
14 schema:genre non_research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N07394a2ba6684b368c63551e1359a50d
18 Nec5c9171a93d4bf2bd6e62bdc84962a7
19 sg:journal.1300579
20 schema:name Thermal sensors improve wrist-worn position tracking
21 schema:pagination 15
22 schema:productId Nb03a180b57284be9878d1e3a087f20a7
23 Nb82b7a99e16d4a2c8e62594c15a54418
24 Nc605b0d03b6046cb87eb1c721c8da942
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112761568
26 https://doi.org/10.1038/s41746-019-0092-2
27 schema:sdDatePublished 2019-04-11T11:53
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher Na2e0ed989e1f422d9ce89201e0e333c2
30 schema:url https://www.nature.com/articles/s41746-019-0092-2
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N04d04aafb8714764a9681e9c8c6bfcc3 rdf:first N3393adda62dc43ba9620eb3c6378cbc2
35 rdf:rest N32e1d6e1fa544a2ead0f704e7a5ea2f3
36 N07394a2ba6684b368c63551e1359a50d schema:issueNumber 1
37 rdf:type schema:PublicationIssue
38 N0a9206e38f814a50bc2a90c2f5dbed9e rdf:first Nc2a4b6e4093142c0921495ac1cba4e84
39 rdf:rest N278c753d39594c9ea9913f9426cca59a
40 N0cc03492522e4930ab5dd4021ddd07a5 schema:affiliation Nd04d62c02a294b63a61443d8878a9308
41 schema:familyName Krishnakumar
42 schema:givenName Anirudh
43 rdf:type schema:Person
44 N278c753d39594c9ea9913f9426cca59a rdf:first N339c92465c7d404f8f38686cace5bdb4
45 rdf:rest N04d04aafb8714764a9681e9c8c6bfcc3
46 N32e1d6e1fa544a2ead0f704e7a5ea2f3 rdf:first N0cc03492522e4930ab5dd4021ddd07a5
47 rdf:rest Naaed2e2dfe4343788c4abaa97bedbebb
48 N3393adda62dc43ba9620eb3c6378cbc2 schema:affiliation https://www.grid.ac/institutes/grid.428122.f
49 schema:familyName White
50 schema:givenName Curt
51 rdf:type schema:Person
52 N339c92465c7d404f8f38686cace5bdb4 schema:affiliation https://www.grid.ac/institutes/grid.428122.f
53 schema:familyName Clucas
54 schema:givenName Jon C.
55 rdf:type schema:Person
56 N37ab25846f4847a0962f6b38dba0da0c schema:affiliation https://www.grid.ac/institutes/grid.428122.f
57 schema:familyName Klein
58 schema:givenName Arno
59 rdf:type schema:Person
60 N7f87bfb02b0142f9a8a3edab79f0e85c schema:affiliation https://www.grid.ac/institutes/grid.250263.0
61 schema:familyName Milham
62 schema:givenName Michael P.
63 rdf:type schema:Person
64 N897086c174b149d7a55bca4c4548917d schema:affiliation https://www.grid.ac/institutes/grid.21107.35
65 schema:familyName Vogelstein
66 schema:givenName Joshua T.
67 rdf:type schema:Person
68 Na2e0ed989e1f422d9ce89201e0e333c2 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Naaed2e2dfe4343788c4abaa97bedbebb rdf:first N897086c174b149d7a55bca4c4548917d
71 rdf:rest Nb43804b3c1b54502a32faf19de82e308
72 Nb03a180b57284be9878d1e3a087f20a7 schema:name readcube_id
73 schema:value 4dcd9f21c824f9cadad9a0fa20c87f8089f529bdfcdb3f9c52cdefebfdda6227
74 rdf:type schema:PropertyValue
75 Nb43804b3c1b54502a32faf19de82e308 rdf:first N7f87bfb02b0142f9a8a3edab79f0e85c
76 rdf:rest Nf04914bdbb2f4f879c32acad1247e4d6
77 Nb82b7a99e16d4a2c8e62594c15a54418 schema:name doi
78 schema:value 10.1038/s41746-019-0092-2
79 rdf:type schema:PropertyValue
80 Nc2a4b6e4093142c0921495ac1cba4e84 schema:affiliation https://www.grid.ac/institutes/grid.428122.f
81 schema:familyName Son
82 schema:givenName Jake J.
83 rdf:type schema:Person
84 Nc605b0d03b6046cb87eb1c721c8da942 schema:name dimensions_id
85 schema:value pub.1112761568
86 rdf:type schema:PropertyValue
87 Nd04d62c02a294b63a61443d8878a9308 schema:name Centre de Recherches Interdisciplinaires (Center for Research and Interdisciplinarity), Paris, France
88 rdf:type schema:Organization
89 Nec5c9171a93d4bf2bd6e62bdc84962a7 schema:volumeNumber 2
90 rdf:type schema:PublicationVolume
91 Nf04914bdbb2f4f879c32acad1247e4d6 rdf:first N37ab25846f4847a0962f6b38dba0da0c
92 rdf:rest rdf:nil
93 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
94 schema:name Engineering
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
97 schema:name Biomedical Engineering
98 rdf:type schema:DefinedTerm
99 sg:journal.1300579 schema:issn 2226-8561
100 2398-6352
101 schema:name npj Digital Medicine
102 rdf:type schema:Periodical
103 sg:pub.10.1007/978-0-387-79061-9_113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013848715
104 https://doi.org/10.1007/978-0-387-79061-9_113
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.brat.2008.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040112662
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.cpr.2013.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024689060
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/s0031-3203(96)00142-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044522995
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1162/neco.1997.9.8.1735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038140272
113 rdf:type schema:CreativeWork
114 https://doi.org/10.3389/fpsyt.2011.00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053588048
115 rdf:type schema:CreativeWork
116 https://doi.org/10.4088/jcp.v67n1207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072209681
117 rdf:type schema:CreativeWork
118 https://www.grid.ac/institutes/grid.21107.35 schema:alternateName Johns Hopkins University
119 schema:name Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
120 rdf:type schema:Organization
121 https://www.grid.ac/institutes/grid.250263.0 schema:alternateName Nathan Kline Institute for Psychiatric Research
122 schema:name Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, New York, NY, USA
123 Center for the Developing Brain, Child Mind Institute, New York, NY, USA
124 rdf:type schema:Organization
125 https://www.grid.ac/institutes/grid.428122.f schema:alternateName Child Mind Institute
126 schema:name Center for the Developing Brain, Child Mind Institute, New York, NY, USA
127 MATTER Lab, Child Mind Institute, New York, NY, USA
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...