Machine-learned epidemiology: real-time detection of foodborne illness at scale View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Adam Sadilek, Stephanie Caty, Lauren DiPrete, Raed Mansour, Tom Schenk, Mark Bergtholdt, Ashish Jha, Prem Ramaswami, Evgeniy Gabrilovich

ABSTRACT

Machine learning has become an increasingly powerful tool for solving complex problems, and its application in public health has been underutilized. The objective of this study is to test the efficacy of a machine-learned model of foodborne illness detection in a real-world setting. To this end, we built FINDER, a machine-learned model for real-time detection of foodborne illness using anonymous and aggregated web search and location data. We computed the fraction of people who visited a particular restaurant and later searched for terms indicative of food poisoning to identify potentially unsafe restaurants. We used this information to focus restaurant inspections in two cities and demonstrated that FINDER improves the accuracy of health inspections; restaurants identified by FINDER are 3.1 times as likely to be deemed unsafe during the inspection as restaurants identified by existing methods. Additionally, FINDER enables us to ascertain previously intractable epidemiological information, for example, in 38% of cases the restaurant potentially causing food poisoning was not the last one visited, which may explain the lower precision of complaint-based inspections. We found that FINDER is able to reliably identify restaurants that have an active lapse in food safety, allowing for implementation of corrective actions that would prevent the potential spread of foodborne illness. More... »

PAGES

36

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41746-018-0045-1

DOI

http://dx.doi.org/10.1038/s41746-018-0045-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106173789


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Google (United States)", 
          "id": "https://www.grid.ac/institutes/grid.420451.6", 
          "name": [
            "Google Inc., 1600 Amphitheatre Parkway, 94043, Mountain View, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sadilek", 
        "givenName": "Adam", 
        "id": "sg:person.013040116415.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013040116415.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Harvard T.H. Chan School of Public Health, 42 Church St, 02135, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Caty", 
        "givenName": "Stephanie", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southern Nevada Health District", 
          "id": "https://www.grid.ac/institutes/grid.422451.4", 
          "name": [
            "Southern Nevada Health District, 280 S Decatur Blvd, 89107, Las Vegas, NV, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "DiPrete", 
        "givenName": "Lauren", 
        "id": "sg:person.013040612212.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013040612212.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chicago Department of Public Health", 
          "id": "https://www.grid.ac/institutes/grid.410374.5", 
          "name": [
            "Chicago Department of Public Health, 333 S State St #200, 60604, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mansour", 
        "givenName": "Raed", 
        "id": "sg:person.01064217020.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064217020.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Chicago Department of Innovation and Technology, 333 S State St #420, 60614, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schenk", 
        "givenName": "Tom", 
        "id": "sg:person.010661745517.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010661745517.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southern Nevada Health District", 
          "id": "https://www.grid.ac/institutes/grid.422451.4", 
          "name": [
            "Southern Nevada Health District, 280 S Decatur Blvd, 89107, Las Vegas, NV, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bergtholdt", 
        "givenName": "Mark", 
        "id": "sg:person.0733132471.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733132471.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "VA Boston Healthcare System", 
          "id": "https://www.grid.ac/institutes/grid.410370.1", 
          "name": [
            "Harvard T.H. Chan School of Public Health, 42 Church St, 02135, Cambridge, MA, USA", 
            "Veterans Affairs Boston Healthcare System, 150 S Huntington Ave, 02130, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jha", 
        "givenName": "Ashish", 
        "id": "sg:person.0757226324.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757226324.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Google (United States)", 
          "id": "https://www.grid.ac/institutes/grid.420451.6", 
          "name": [
            "Google Inc., 1600 Amphitheatre Parkway, 94043, Mountain View, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ramaswami", 
        "givenName": "Prem", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Google (United States)", 
          "id": "https://www.grid.ac/institutes/grid.420451.6", 
          "name": [
            "Google Inc., 1600 Amphitheatre Parkway, 94043, Mountain View, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gabrilovich", 
        "givenName": "Evgeniy", 
        "id": "sg:person.013074407021.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013074407021.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0895-4356(90)90060-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001653957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005138990", 
          "https://doi.org/10.1038/nature07634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1197/jamia.m2544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014234010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1513876.1513877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019830338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid0304.970420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020318240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0023610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020852786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmp0900702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025752925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pmed.0030401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027733404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1742-7622-11-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052900851", 
          "https://doi.org/10.1186/1742-7622-11-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/bsp.2011.0088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059240278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1202775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062464504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1248506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062469256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4315/0362-028x-68.10.2184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072509043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5365/wpsar.2015.6.1.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072793550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077988393", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078955508", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/phh.0000000000000516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083686773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/phh.0000000000000516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083686773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jpids/pix004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084185983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jpids/pix004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084185983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12879-017-2424-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085211578", 
          "https://doi.org/10.1186/s12879-017-2424-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12879-017-2424-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085211578", 
          "https://doi.org/10.1186/s12879-017-2424-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2105/ajph.2017.303767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085471146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1609/aimag.v38i1.2711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103067351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1613/jair.2669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105591888"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Machine learning has become an increasingly powerful tool for solving complex problems, and its application in public health has been underutilized. The objective of this study is to test the efficacy of a machine-learned model of foodborne illness detection in a real-world setting. To this end, we built FINDER, a machine-learned model for real-time detection of foodborne illness using anonymous and aggregated web search and location data. We computed the fraction of people who visited a particular restaurant and later searched for terms indicative of food poisoning to identify potentially unsafe restaurants. We used this information to focus restaurant inspections in two cities and demonstrated that FINDER improves the accuracy of health inspections; restaurants identified by FINDER are 3.1 times as likely to be deemed unsafe during the inspection as restaurants identified by existing methods. Additionally, FINDER enables us to ascertain previously intractable epidemiological information, for example, in 38% of cases the restaurant potentially causing food poisoning was not the last one visited, which may explain the lower precision of complaint-based inspections. We found that FINDER is able to reliably identify restaurants that have an active lapse in food safety, allowing for implementation of corrective actions that would prevent the potential spread of foodborne illness.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41746-018-0045-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4455519", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1300579", 
        "issn": [
          "2226-8561", 
          "2398-6352"
        ], 
        "name": "npj Digital Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "Machine-learned epidemiology: real-time detection of foodborne illness at scale", 
    "pagination": "36", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a2b35c8c484c51b97a92d8ed89cfdf67f26234ca2e7877b3842ee5d4059d7c60"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41746-018-0045-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106173789"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41746-018-0045-1", 
      "https://app.dimensions.ai/details/publication/pub.1106173789"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000578.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41746-018-0045-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41746-018-0045-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41746-018-0045-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41746-018-0045-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41746-018-0045-1'


 

This table displays all metadata directly associated to this object as RDF triples.

199 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41746-018-0045-1 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author Nef5ca0f9f2f14440be379cf84e65131f
4 schema:citation sg:pub.10.1038/nature07634
5 sg:pub.10.1186/1742-7622-11-7
6 sg:pub.10.1186/s12879-017-2424-7
7 https://app.dimensions.ai/details/publication/pub.1077988393
8 https://app.dimensions.ai/details/publication/pub.1078955508
9 https://doi.org/10.1016/0895-4356(90)90060-3
10 https://doi.org/10.1056/nejmp0900702
11 https://doi.org/10.1089/bsp.2011.0088
12 https://doi.org/10.1093/jpids/pix004
13 https://doi.org/10.1097/phh.0000000000000516
14 https://doi.org/10.1126/science.1202775
15 https://doi.org/10.1126/science.1248506
16 https://doi.org/10.1145/1513876.1513877
17 https://doi.org/10.1197/jamia.m2544
18 https://doi.org/10.1371/journal.pmed.0030401
19 https://doi.org/10.1371/journal.pone.0023610
20 https://doi.org/10.1609/aimag.v38i1.2711
21 https://doi.org/10.1613/jair.2669
22 https://doi.org/10.2105/ajph.2017.303767
23 https://doi.org/10.3201/eid0304.970420
24 https://doi.org/10.4315/0362-028x-68.10.2184
25 https://doi.org/10.5365/wpsar.2015.6.1.019
26 schema:datePublished 2018-12
27 schema:datePublishedReg 2018-12-01
28 schema:description Machine learning has become an increasingly powerful tool for solving complex problems, and its application in public health has been underutilized. The objective of this study is to test the efficacy of a machine-learned model of foodborne illness detection in a real-world setting. To this end, we built FINDER, a machine-learned model for real-time detection of foodborne illness using anonymous and aggregated web search and location data. We computed the fraction of people who visited a particular restaurant and later searched for terms indicative of food poisoning to identify potentially unsafe restaurants. We used this information to focus restaurant inspections in two cities and demonstrated that FINDER improves the accuracy of health inspections; restaurants identified by FINDER are 3.1 times as likely to be deemed unsafe during the inspection as restaurants identified by existing methods. Additionally, FINDER enables us to ascertain previously intractable epidemiological information, for example, in 38% of cases the restaurant potentially causing food poisoning was not the last one visited, which may explain the lower precision of complaint-based inspections. We found that FINDER is able to reliably identify restaurants that have an active lapse in food safety, allowing for implementation of corrective actions that would prevent the potential spread of foodborne illness.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf N6b0c24c586ea4752ace1bf82f89c949b
33 Nd0cdffe89c6340ddabc67c7334259f67
34 sg:journal.1300579
35 schema:name Machine-learned epidemiology: real-time detection of foodborne illness at scale
36 schema:pagination 36
37 schema:productId N3a77cbb81f5a4963af1d918cf0b08dab
38 N7fc5fd0e28c4413eb919dacee75bbb7f
39 Ndef4ee6abc3841a5b16b12183e99f94e
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106173789
41 https://doi.org/10.1038/s41746-018-0045-1
42 schema:sdDatePublished 2019-04-10T18:29
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Nb03dadb9cfdd4dbe8c54602877ffc714
45 schema:url https://www.nature.com/articles/s41746-018-0045-1
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N011a094c32334bbd84021c9da87ccb31 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
50 schema:familyName Caty
51 schema:givenName Stephanie
52 rdf:type schema:Person
53 N11f7f2a11e9448608370a4f9f7950c93 rdf:first sg:person.0733132471.32
54 rdf:rest Na9baf88490824b77be6fda3a69ac7174
55 N21a945ff75894e7aa4f5b4860a815943 rdf:first sg:person.013074407021.94
56 rdf:rest rdf:nil
57 N2bca5528530546bf8ab742df4e20def5 rdf:first sg:person.013040612212.08
58 rdf:rest N6e195a87597e4d04b11794471dbd85d9
59 N3a77cbb81f5a4963af1d918cf0b08dab schema:name dimensions_id
60 schema:value pub.1106173789
61 rdf:type schema:PropertyValue
62 N6b0c24c586ea4752ace1bf82f89c949b schema:issueNumber 1
63 rdf:type schema:PublicationIssue
64 N6e195a87597e4d04b11794471dbd85d9 rdf:first sg:person.01064217020.03
65 rdf:rest Nef4ac0bb8b8d4a359acb2ec3b4426174
66 N7fc5fd0e28c4413eb919dacee75bbb7f schema:name doi
67 schema:value 10.1038/s41746-018-0045-1
68 rdf:type schema:PropertyValue
69 N9b9e621908674604a5917f69d9399966 rdf:first N011a094c32334bbd84021c9da87ccb31
70 rdf:rest N2bca5528530546bf8ab742df4e20def5
71 Na9baf88490824b77be6fda3a69ac7174 rdf:first sg:person.0757226324.38
72 rdf:rest Ne958b0f4e9314270a4450c4a204a3973
73 Nb03dadb9cfdd4dbe8c54602877ffc714 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Ncaca70f8cda742599c106755b028de88 schema:name Chicago Department of Innovation and Technology, 333 S State St #420, 60614, Chicago, IL, USA
76 rdf:type schema:Organization
77 Nd0cdffe89c6340ddabc67c7334259f67 schema:volumeNumber 1
78 rdf:type schema:PublicationVolume
79 Nd76ba47e17de4b6dbfe764335c6b20ff schema:affiliation https://www.grid.ac/institutes/grid.420451.6
80 schema:familyName Ramaswami
81 schema:givenName Prem
82 rdf:type schema:Person
83 Ndef4ee6abc3841a5b16b12183e99f94e schema:name readcube_id
84 schema:value a2b35c8c484c51b97a92d8ed89cfdf67f26234ca2e7877b3842ee5d4059d7c60
85 rdf:type schema:PropertyValue
86 Ne958b0f4e9314270a4450c4a204a3973 rdf:first Nd76ba47e17de4b6dbfe764335c6b20ff
87 rdf:rest N21a945ff75894e7aa4f5b4860a815943
88 Nef4ac0bb8b8d4a359acb2ec3b4426174 rdf:first sg:person.010661745517.95
89 rdf:rest N11f7f2a11e9448608370a4f9f7950c93
90 Nef5ca0f9f2f14440be379cf84e65131f rdf:first sg:person.013040116415.03
91 rdf:rest N9b9e621908674604a5917f69d9399966
92 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
93 schema:name Medical and Health Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
96 schema:name Public Health and Health Services
97 rdf:type schema:DefinedTerm
98 sg:grant.4455519 http://pending.schema.org/fundedItem sg:pub.10.1038/s41746-018-0045-1
99 rdf:type schema:MonetaryGrant
100 sg:journal.1300579 schema:issn 2226-8561
101 2398-6352
102 schema:name npj Digital Medicine
103 rdf:type schema:Periodical
104 sg:person.01064217020.03 schema:affiliation https://www.grid.ac/institutes/grid.410374.5
105 schema:familyName Mansour
106 schema:givenName Raed
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064217020.03
108 rdf:type schema:Person
109 sg:person.010661745517.95 schema:affiliation Ncaca70f8cda742599c106755b028de88
110 schema:familyName Schenk
111 schema:givenName Tom
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010661745517.95
113 rdf:type schema:Person
114 sg:person.013040116415.03 schema:affiliation https://www.grid.ac/institutes/grid.420451.6
115 schema:familyName Sadilek
116 schema:givenName Adam
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013040116415.03
118 rdf:type schema:Person
119 sg:person.013040612212.08 schema:affiliation https://www.grid.ac/institutes/grid.422451.4
120 schema:familyName DiPrete
121 schema:givenName Lauren
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013040612212.08
123 rdf:type schema:Person
124 sg:person.013074407021.94 schema:affiliation https://www.grid.ac/institutes/grid.420451.6
125 schema:familyName Gabrilovich
126 schema:givenName Evgeniy
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013074407021.94
128 rdf:type schema:Person
129 sg:person.0733132471.32 schema:affiliation https://www.grid.ac/institutes/grid.422451.4
130 schema:familyName Bergtholdt
131 schema:givenName Mark
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733132471.32
133 rdf:type schema:Person
134 sg:person.0757226324.38 schema:affiliation https://www.grid.ac/institutes/grid.410370.1
135 schema:familyName Jha
136 schema:givenName Ashish
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757226324.38
138 rdf:type schema:Person
139 sg:pub.10.1038/nature07634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005138990
140 https://doi.org/10.1038/nature07634
141 rdf:type schema:CreativeWork
142 sg:pub.10.1186/1742-7622-11-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052900851
143 https://doi.org/10.1186/1742-7622-11-7
144 rdf:type schema:CreativeWork
145 sg:pub.10.1186/s12879-017-2424-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085211578
146 https://doi.org/10.1186/s12879-017-2424-7
147 rdf:type schema:CreativeWork
148 https://app.dimensions.ai/details/publication/pub.1077988393 schema:CreativeWork
149 https://app.dimensions.ai/details/publication/pub.1078955508 schema:CreativeWork
150 https://doi.org/10.1016/0895-4356(90)90060-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001653957
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1056/nejmp0900702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025752925
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1089/bsp.2011.0088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059240278
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1093/jpids/pix004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084185983
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1097/phh.0000000000000516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083686773
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1126/science.1202775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062464504
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1126/science.1248506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062469256
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1145/1513876.1513877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019830338
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1197/jamia.m2544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014234010
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1371/journal.pmed.0030401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027733404
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1371/journal.pone.0023610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020852786
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1609/aimag.v38i1.2711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103067351
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1613/jair.2669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105591888
175 rdf:type schema:CreativeWork
176 https://doi.org/10.2105/ajph.2017.303767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085471146
177 rdf:type schema:CreativeWork
178 https://doi.org/10.3201/eid0304.970420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020318240
179 rdf:type schema:CreativeWork
180 https://doi.org/10.4315/0362-028x-68.10.2184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072509043
181 rdf:type schema:CreativeWork
182 https://doi.org/10.5365/wpsar.2015.6.1.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072793550
183 rdf:type schema:CreativeWork
184 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
185 schema:name Harvard T.H. Chan School of Public Health, 42 Church St, 02135, Cambridge, MA, USA
186 rdf:type schema:Organization
187 https://www.grid.ac/institutes/grid.410370.1 schema:alternateName VA Boston Healthcare System
188 schema:name Harvard T.H. Chan School of Public Health, 42 Church St, 02135, Cambridge, MA, USA
189 Veterans Affairs Boston Healthcare System, 150 S Huntington Ave, 02130, Boston, MA, USA
190 rdf:type schema:Organization
191 https://www.grid.ac/institutes/grid.410374.5 schema:alternateName Chicago Department of Public Health
192 schema:name Chicago Department of Public Health, 333 S State St #200, 60604, Chicago, IL, USA
193 rdf:type schema:Organization
194 https://www.grid.ac/institutes/grid.420451.6 schema:alternateName Google (United States)
195 schema:name Google Inc., 1600 Amphitheatre Parkway, 94043, Mountain View, CA, USA
196 rdf:type schema:Organization
197 https://www.grid.ac/institutes/grid.422451.4 schema:alternateName Southern Nevada Health District
198 schema:name Southern Nevada Health District, 280 S Decatur Blvd, 89107, Las Vegas, NV, USA
199 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...