Quantifying photoinduced carriers transport in exciton–polariton coupling of MoS2 monolayers View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-04-23

AUTHORS

Min-Wen Yu, Satoshi Ishii, Shisheng Li, Ji-Ren Ku, Jhen-Hong Yang, Kuan-Lin Su, Takaaki Taniguchi, Tadaaki Nagao, Kuo-Ping Chen

ABSTRACT

Exciton–polariton coupling between transition metal dichalcogenide (TMD) monolayer and plasmonic nanostructures generates additional states that are rich in physics, gaining significant attention in recent years. In exciton–polariton coupling, the understanding of electronic-energy exchange in Rabi splitting is critical. The typical structures that have been adopted to study the coupling are “TMD monolayers embedded in a metallic-nanoparticle-on-mirror (NPoM) system.” However, the exciton orientations are not parallel to the induced dipole direction of the NPoM system, which leads to inefficient coupling. Our proposed one-dimensional plasmonic nanogrooves (NGs) can align the MoS2 monolayers’ exciton orientation and plasmon polaritons in parallel, which addresses the aforementioned issue. In addition, we clearly reveal the maximum surface potential (SP) change on intermediate coupled sample by the photo-excitation caused by the carrier rearrangement. As a result, a significant Rabi splitting (65 meV) at room temperature is demonstrated. Furthermore, we attribute the photoluminescence enhancement to the parallel exciton–polariton interactions. More... »

PAGES

47

References to SciGraph publications

  • 2006-09. Bose–Einstein condensation of exciton polaritons in NATURE
  • 2013-01-20. Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates in NATURE PHOTONICS
  • 2015-07-15. Giant colloidal silver crystals for low-loss linear and nonlinear plasmonics in NATURE COMMUNICATIONS
  • 2003-09. Experimental realization of a one-atom laser in the regime of strong coupling in NATURE
  • 2015-03-16. Monolayer semiconductor nanocavity lasers with ultralow thresholds in NATURE
  • 2009-09-20. Superfluidity of polaritons in semiconductor microcavities in NATURE PHYSICS
  • 2017-11-03. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature in NATURE COMMUNICATIONS
  • 2018-06-11. Selective manipulation of electronically excited states through strong light–matter interactions in NATURE COMMUNICATIONS
  • 2018-04-23. Vapour–liquid–solid growth of monolayer MoS2 nanoribbons in NATURE MATERIALS
  • 2013-03-03. Orientation of luminescent excitons in layered nanomaterials in NATURE NANOTECHNOLOGY
  • 2016-06-13. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit in NATURE COMMUNICATIONS
  • 2014-12-23. Strong light–matter coupling in two-dimensional atomic crystals in NATURE PHOTONICS
  • 2018-01-09. Structural absorption by barbule microstructures of super black bird of paradise feathers in NATURE COMMUNICATIONS
  • 2016-06-13. Single-molecule strong coupling at room temperature in plasmonic nanocavities in NATURE
  • 2010-04-01. Dicke quantum phase transition with a superfluid gas in an optical cavity in NATURE
  • 2019-01-16. Direct observation of ultrafast plasmonic hot electron transfer in the strong coupling regime in LIGHT: SCIENCE & APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41699-021-00227-y

    DOI

    http://dx.doi.org/10.1038/s41699-021-00227-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1137434821


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 305-0044, Tsukuba, Ibaraki, Japan", 
              "id": "http://www.grid.ac/institutes/grid.21941.3f", 
              "name": [
                "College of Photonics, National Chiao Tung University and National Yang Ming Chiao Tung University, 71150, Tainan, Taiwan", 
                "International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 305-0044, Tsukuba, Ibaraki, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yu", 
            "givenName": "Min-Wen", 
            "id": "sg:person.013064230313.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013064230313.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 305-0044, Tsukuba, Ibaraki, Japan", 
              "id": "http://www.grid.ac/institutes/grid.21941.3f", 
              "name": [
                "International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 305-0044, Tsukuba, Ibaraki, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ishii", 
            "givenName": "Satoshi", 
            "id": "sg:person.01070040065.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070040065.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 305-0044, Tsukuba, Ibaraki, Japan", 
              "id": "http://www.grid.ac/institutes/grid.21941.3f", 
              "name": [
                "International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 305-0044, Tsukuba, Ibaraki, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Shisheng", 
            "id": "sg:person.07647052047.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07647052047.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Imaging and Biomedical Photonic, College of Photonics, National Chiao Tung University and National Yang Ming Chiao Tung University, 71150, Tainan, Taiwan", 
              "id": "http://www.grid.ac/institutes/grid.260539.b", 
              "name": [
                "Institute of Imaging and Biomedical Photonic, College of Photonics, National Chiao Tung University and National Yang Ming Chiao Tung University, 71150, Tainan, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ku", 
            "givenName": "Ji-Ren", 
            "id": "sg:person.015155266775.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015155266775.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Photonic System, College of Photonics, National Chiao Tung University and National Yang Ming Chiao Tung University, 71150, Tainan, Taiwan", 
              "id": "http://www.grid.ac/institutes/grid.260539.b", 
              "name": [
                "Institute of Photonic System, College of Photonics, National Chiao Tung University and National Yang Ming Chiao Tung University, 71150, Tainan, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Jhen-Hong", 
            "id": "sg:person.011723715415.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011723715415.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Imaging and Biomedical Photonic, College of Photonics, National Chiao Tung University and National Yang Ming Chiao Tung University, 71150, Tainan, Taiwan", 
              "id": "http://www.grid.ac/institutes/grid.260539.b", 
              "name": [
                "Institute of Imaging and Biomedical Photonic, College of Photonics, National Chiao Tung University and National Yang Ming Chiao Tung University, 71150, Tainan, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Su", 
            "givenName": "Kuan-Lin", 
            "id": "sg:person.016562306163.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016562306163.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 305-0044, Tsukuba, Ibaraki, Japan", 
              "id": "http://www.grid.ac/institutes/grid.21941.3f", 
              "name": [
                "International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 305-0044, Tsukuba, Ibaraki, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Taniguchi", 
            "givenName": "Takaaki", 
            "id": "sg:person.0606377274.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606377274.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Condensed Matter Physics, Graduate School of Science, Hokkaido University, 060-0810, Sapporo, Hokkaido, Japan", 
              "id": "http://www.grid.ac/institutes/grid.39158.36", 
              "name": [
                "International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 305-0044, Tsukuba, Ibaraki, Japan", 
                "Department of Condensed Matter Physics, Graduate School of Science, Hokkaido University, 060-0810, Sapporo, Hokkaido, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nagao", 
            "givenName": "Tadaaki", 
            "id": "sg:person.013227150311.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013227150311.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Imaging and Biomedical Photonic, College of Photonics, National Chiao Tung University and National Yang Ming Chiao Tung University, 71150, Tainan, Taiwan", 
              "id": "http://www.grid.ac/institutes/grid.260539.b", 
              "name": [
                "Institute of Imaging and Biomedical Photonic, College of Photonics, National Chiao Tung University and National Yang Ming Chiao Tung University, 71150, Tainan, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Kuo-Ping", 
            "id": "sg:person.0737465714.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737465714.88"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nphoton.2014.304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012751246", 
              "https://doi.org/10.1038/nphoton.2014.304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14290", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026995369", 
              "https://doi.org/10.1038/nature14290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2013.20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030307395", 
              "https://doi.org/10.1038/nnano.2013.20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-04736-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104412569", 
              "https://doi.org/10.1038/s41467-018-04736-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1364", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001312614", 
              "https://doi.org/10.1038/nphys1364"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-01398-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092446358", 
              "https://doi.org/10.1038/s41467-017-01398-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-02088-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100092794", 
              "https://doi.org/10.1038/s41467-017-02088-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01974", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022559465", 
              "https://doi.org/10.1038/nature01974"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034025717", 
              "https://doi.org/10.1038/nature09009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature17974", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011315958", 
              "https://doi.org/10.1038/nature17974"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms8734", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022145174", 
              "https://doi.org/10.1038/ncomms8734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2012.340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047585918", 
              "https://doi.org/10.1038/nphoton.2012.340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41563-018-0055-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103549260", 
              "https://doi.org/10.1038/s41563-018-0055-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41377-019-0121-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111409418", 
              "https://doi.org/10.1038/s41377-019-0121-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020663836", 
              "https://doi.org/10.1038/nature05131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms11823", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043569877", 
              "https://doi.org/10.1038/ncomms11823"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-04-23", 
        "datePublishedReg": "2021-04-23", 
        "description": "Exciton\u2013polariton coupling between transition metal dichalcogenide (TMD) monolayer and plasmonic nanostructures generates additional states that are rich in physics, gaining significant attention in recent years. In exciton\u2013polariton coupling, the understanding of electronic-energy exchange in Rabi splitting is critical. The typical structures that have been adopted to study the coupling are \u201cTMD monolayers embedded in a metallic-nanoparticle-on-mirror (NPoM) system.\u201d However, the exciton orientations are not parallel to the induced dipole direction of the NPoM system, which leads to inefficient coupling. Our proposed one-dimensional plasmonic nanogrooves (NGs) can align the MoS2 monolayers\u2019 exciton orientation and plasmon polaritons in parallel, which addresses the aforementioned issue. In addition, we clearly reveal the maximum surface potential (SP) change on intermediate coupled sample by the photo-excitation caused by the carrier rearrangement. As a result, a significant Rabi splitting (65\u2009meV) at room temperature is demonstrated. Furthermore, we attribute the photoluminescence enhancement to the parallel exciton\u2013polariton interactions.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41699-021-00227-y", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6534707", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8427494", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6822722", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1290452", 
            "issn": [
              "2397-7132"
            ], 
            "name": "npj 2D Materials and Applications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "keywords": [
          "exciton-polariton coupling", 
          "exciton orientation", 
          "Rabi splitting", 
          "MoS2 monolayer", 
          "transition metal dichalcogenide monolayers", 
          "exciton-polariton interaction", 
          "electronic energy exchange", 
          "metal dichalcogenide monolayers", 
          "dichalcogenide monolayers", 
          "plasmon polaritons", 
          "TMD monolayers", 
          "plasmonic nanostructures", 
          "surface potential changes", 
          "photoluminescence enhancement", 
          "carrier transport", 
          "mirror system", 
          "inefficient coupling", 
          "room temperature", 
          "additional states", 
          "coupling", 
          "dipole direction", 
          "monolayers", 
          "splitting", 
          "nanogrooves", 
          "polaritons", 
          "physics", 
          "nanostructures", 
          "orientation", 
          "typical structure", 
          "state", 
          "temperature", 
          "enhancement", 
          "transport", 
          "significant attention", 
          "structure", 
          "interaction", 
          "direction", 
          "system", 
          "parallel", 
          "potential changes", 
          "exchange", 
          "samples", 
          "results", 
          "recent years", 
          "rearrangement", 
          "understanding", 
          "addition", 
          "changes", 
          "attention", 
          "aforementioned issues", 
          "issues", 
          "years", 
          "induced dipole direction", 
          "NPoM system", 
          "one-dimensional plasmonic nanogrooves", 
          "plasmonic nanogrooves", 
          "maximum surface potential (SP) change", 
          "carrier rearrangement", 
          "significant Rabi splitting", 
          "parallel exciton\u2013polariton interactions", 
          "Quantifying photoinduced carriers transport", 
          "photoinduced carriers transport"
        ], 
        "name": "Quantifying photoinduced carriers transport in exciton\u2013polariton coupling of MoS2 monolayers", 
        "pagination": "47", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1137434821"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41699-021-00227-y"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41699-021-00227-y", 
          "https://app.dimensions.ai/details/publication/pub.1137434821"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T19:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_917.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41699-021-00227-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41699-021-00227-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41699-021-00227-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41699-021-00227-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41699-021-00227-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    255 TRIPLES      22 PREDICATES      103 URIs      79 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41699-021-00227-y schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author Naf7ddfb17a1f44ee8390cced09a6843a
    4 schema:citation sg:pub.10.1038/nature01974
    5 sg:pub.10.1038/nature05131
    6 sg:pub.10.1038/nature09009
    7 sg:pub.10.1038/nature14290
    8 sg:pub.10.1038/nature17974
    9 sg:pub.10.1038/ncomms11823
    10 sg:pub.10.1038/ncomms8734
    11 sg:pub.10.1038/nnano.2013.20
    12 sg:pub.10.1038/nphoton.2012.340
    13 sg:pub.10.1038/nphoton.2014.304
    14 sg:pub.10.1038/nphys1364
    15 sg:pub.10.1038/s41377-019-0121-6
    16 sg:pub.10.1038/s41467-017-01398-3
    17 sg:pub.10.1038/s41467-017-02088-w
    18 sg:pub.10.1038/s41467-018-04736-1
    19 sg:pub.10.1038/s41563-018-0055-z
    20 schema:datePublished 2021-04-23
    21 schema:datePublishedReg 2021-04-23
    22 schema:description Exciton–polariton coupling between transition metal dichalcogenide (TMD) monolayer and plasmonic nanostructures generates additional states that are rich in physics, gaining significant attention in recent years. In exciton–polariton coupling, the understanding of electronic-energy exchange in Rabi splitting is critical. The typical structures that have been adopted to study the coupling are “TMD monolayers embedded in a metallic-nanoparticle-on-mirror (NPoM) system.” However, the exciton orientations are not parallel to the induced dipole direction of the NPoM system, which leads to inefficient coupling. Our proposed one-dimensional plasmonic nanogrooves (NGs) can align the MoS2 monolayers’ exciton orientation and plasmon polaritons in parallel, which addresses the aforementioned issue. In addition, we clearly reveal the maximum surface potential (SP) change on intermediate coupled sample by the photo-excitation caused by the carrier rearrangement. As a result, a significant Rabi splitting (65 meV) at room temperature is demonstrated. Furthermore, we attribute the photoluminescence enhancement to the parallel exciton–polariton interactions.
    23 schema:genre article
    24 schema:inLanguage en
    25 schema:isAccessibleForFree true
    26 schema:isPartOf N5b0e77d889bd446d83f1d4d53c8bb256
    27 Nc989b5285bf0420cb13dfde28066c69e
    28 sg:journal.1290452
    29 schema:keywords MoS2 monolayer
    30 NPoM system
    31 Quantifying photoinduced carriers transport
    32 Rabi splitting
    33 TMD monolayers
    34 addition
    35 additional states
    36 aforementioned issues
    37 attention
    38 carrier rearrangement
    39 carrier transport
    40 changes
    41 coupling
    42 dichalcogenide monolayers
    43 dipole direction
    44 direction
    45 electronic energy exchange
    46 enhancement
    47 exchange
    48 exciton orientation
    49 exciton-polariton coupling
    50 exciton-polariton interaction
    51 induced dipole direction
    52 inefficient coupling
    53 interaction
    54 issues
    55 maximum surface potential (SP) change
    56 metal dichalcogenide monolayers
    57 mirror system
    58 monolayers
    59 nanogrooves
    60 nanostructures
    61 one-dimensional plasmonic nanogrooves
    62 orientation
    63 parallel
    64 parallel exciton–polariton interactions
    65 photoinduced carriers transport
    66 photoluminescence enhancement
    67 physics
    68 plasmon polaritons
    69 plasmonic nanogrooves
    70 plasmonic nanostructures
    71 polaritons
    72 potential changes
    73 rearrangement
    74 recent years
    75 results
    76 room temperature
    77 samples
    78 significant Rabi splitting
    79 significant attention
    80 splitting
    81 state
    82 structure
    83 surface potential changes
    84 system
    85 temperature
    86 transition metal dichalcogenide monolayers
    87 transport
    88 typical structure
    89 understanding
    90 years
    91 schema:name Quantifying photoinduced carriers transport in exciton–polariton coupling of MoS2 monolayers
    92 schema:pagination 47
    93 schema:productId N190e305eebfe4eb383cc85dd01dcb703
    94 N2c02f45d32064bfb897fe0050453110d
    95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137434821
    96 https://doi.org/10.1038/s41699-021-00227-y
    97 schema:sdDatePublished 2022-01-01T19:03
    98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    99 schema:sdPublisher N71ea723a1f5f4d959bfcf6f568f1b732
    100 schema:url https://doi.org/10.1038/s41699-021-00227-y
    101 sgo:license sg:explorer/license/
    102 sgo:sdDataset articles
    103 rdf:type schema:ScholarlyArticle
    104 N175c13849ccc4750a267aa74b4209341 rdf:first sg:person.01070040065.10
    105 rdf:rest N55e647f996434d7499dd6203df81f549
    106 N190e305eebfe4eb383cc85dd01dcb703 schema:name doi
    107 schema:value 10.1038/s41699-021-00227-y
    108 rdf:type schema:PropertyValue
    109 N2c02f45d32064bfb897fe0050453110d schema:name dimensions_id
    110 schema:value pub.1137434821
    111 rdf:type schema:PropertyValue
    112 N5540f84018b642e5ab762759ca7b153c rdf:first sg:person.011723715415.27
    113 rdf:rest N65e1a208fd8c486aac5eee2214c59387
    114 N55e647f996434d7499dd6203df81f549 rdf:first sg:person.07647052047.38
    115 rdf:rest N67d85fd39b9e4a7197d46a9427b411b1
    116 N5b0e77d889bd446d83f1d4d53c8bb256 schema:volumeNumber 5
    117 rdf:type schema:PublicationVolume
    118 N65e1a208fd8c486aac5eee2214c59387 rdf:first sg:person.016562306163.44
    119 rdf:rest N820b0489b8424ad08ce4decd3a417d83
    120 N67d85fd39b9e4a7197d46a9427b411b1 rdf:first sg:person.015155266775.27
    121 rdf:rest N5540f84018b642e5ab762759ca7b153c
    122 N71ea723a1f5f4d959bfcf6f568f1b732 schema:name Springer Nature - SN SciGraph project
    123 rdf:type schema:Organization
    124 N820b0489b8424ad08ce4decd3a417d83 rdf:first sg:person.0606377274.31
    125 rdf:rest Ne5fbe9b1ffe64169a669bc7397460ed3
    126 Naf7ddfb17a1f44ee8390cced09a6843a rdf:first sg:person.013064230313.18
    127 rdf:rest N175c13849ccc4750a267aa74b4209341
    128 Nb8030b22d24b4bf495a47236d03d128d rdf:first sg:person.0737465714.88
    129 rdf:rest rdf:nil
    130 Nc989b5285bf0420cb13dfde28066c69e schema:issueNumber 1
    131 rdf:type schema:PublicationIssue
    132 Ne5fbe9b1ffe64169a669bc7397460ed3 rdf:first sg:person.013227150311.39
    133 rdf:rest Nb8030b22d24b4bf495a47236d03d128d
    134 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    135 schema:name Chemical Sciences
    136 rdf:type schema:DefinedTerm
    137 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    138 schema:name Physical Chemistry (incl. Structural)
    139 rdf:type schema:DefinedTerm
    140 sg:grant.6534707 http://pending.schema.org/fundedItem sg:pub.10.1038/s41699-021-00227-y
    141 rdf:type schema:MonetaryGrant
    142 sg:grant.6822722 http://pending.schema.org/fundedItem sg:pub.10.1038/s41699-021-00227-y
    143 rdf:type schema:MonetaryGrant
    144 sg:grant.8427494 http://pending.schema.org/fundedItem sg:pub.10.1038/s41699-021-00227-y
    145 rdf:type schema:MonetaryGrant
    146 sg:journal.1290452 schema:issn 2397-7132
    147 schema:name npj 2D Materials and Applications
    148 schema:publisher Springer Nature
    149 rdf:type schema:Periodical
    150 sg:person.01070040065.10 schema:affiliation grid-institutes:grid.21941.3f
    151 schema:familyName Ishii
    152 schema:givenName Satoshi
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070040065.10
    154 rdf:type schema:Person
    155 sg:person.011723715415.27 schema:affiliation grid-institutes:grid.260539.b
    156 schema:familyName Yang
    157 schema:givenName Jhen-Hong
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011723715415.27
    159 rdf:type schema:Person
    160 sg:person.013064230313.18 schema:affiliation grid-institutes:grid.21941.3f
    161 schema:familyName Yu
    162 schema:givenName Min-Wen
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013064230313.18
    164 rdf:type schema:Person
    165 sg:person.013227150311.39 schema:affiliation grid-institutes:grid.39158.36
    166 schema:familyName Nagao
    167 schema:givenName Tadaaki
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013227150311.39
    169 rdf:type schema:Person
    170 sg:person.015155266775.27 schema:affiliation grid-institutes:grid.260539.b
    171 schema:familyName Ku
    172 schema:givenName Ji-Ren
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015155266775.27
    174 rdf:type schema:Person
    175 sg:person.016562306163.44 schema:affiliation grid-institutes:grid.260539.b
    176 schema:familyName Su
    177 schema:givenName Kuan-Lin
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016562306163.44
    179 rdf:type schema:Person
    180 sg:person.0606377274.31 schema:affiliation grid-institutes:grid.21941.3f
    181 schema:familyName Taniguchi
    182 schema:givenName Takaaki
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606377274.31
    184 rdf:type schema:Person
    185 sg:person.0737465714.88 schema:affiliation grid-institutes:grid.260539.b
    186 schema:familyName Chen
    187 schema:givenName Kuo-Ping
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737465714.88
    189 rdf:type schema:Person
    190 sg:person.07647052047.38 schema:affiliation grid-institutes:grid.21941.3f
    191 schema:familyName Li
    192 schema:givenName Shisheng
    193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07647052047.38
    194 rdf:type schema:Person
    195 sg:pub.10.1038/nature01974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022559465
    196 https://doi.org/10.1038/nature01974
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/nature05131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020663836
    199 https://doi.org/10.1038/nature05131
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/nature09009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034025717
    202 https://doi.org/10.1038/nature09009
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/nature14290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026995369
    205 https://doi.org/10.1038/nature14290
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/nature17974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011315958
    208 https://doi.org/10.1038/nature17974
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/ncomms11823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043569877
    211 https://doi.org/10.1038/ncomms11823
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/ncomms8734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022145174
    214 https://doi.org/10.1038/ncomms8734
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/nnano.2013.20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030307395
    217 https://doi.org/10.1038/nnano.2013.20
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/nphoton.2012.340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047585918
    220 https://doi.org/10.1038/nphoton.2012.340
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/nphoton.2014.304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012751246
    223 https://doi.org/10.1038/nphoton.2014.304
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/nphys1364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001312614
    226 https://doi.org/10.1038/nphys1364
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/s41377-019-0121-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111409418
    229 https://doi.org/10.1038/s41377-019-0121-6
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/s41467-017-01398-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092446358
    232 https://doi.org/10.1038/s41467-017-01398-3
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/s41467-017-02088-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1100092794
    235 https://doi.org/10.1038/s41467-017-02088-w
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/s41467-018-04736-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104412569
    238 https://doi.org/10.1038/s41467-018-04736-1
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/s41563-018-0055-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1103549260
    241 https://doi.org/10.1038/s41563-018-0055-z
    242 rdf:type schema:CreativeWork
    243 grid-institutes:grid.21941.3f schema:alternateName International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 305-0044, Tsukuba, Ibaraki, Japan
    244 schema:name College of Photonics, National Chiao Tung University and National Yang Ming Chiao Tung University, 71150, Tainan, Taiwan
    245 International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 305-0044, Tsukuba, Ibaraki, Japan
    246 rdf:type schema:Organization
    247 grid-institutes:grid.260539.b schema:alternateName Institute of Imaging and Biomedical Photonic, College of Photonics, National Chiao Tung University and National Yang Ming Chiao Tung University, 71150, Tainan, Taiwan
    248 Institute of Photonic System, College of Photonics, National Chiao Tung University and National Yang Ming Chiao Tung University, 71150, Tainan, Taiwan
    249 schema:name Institute of Imaging and Biomedical Photonic, College of Photonics, National Chiao Tung University and National Yang Ming Chiao Tung University, 71150, Tainan, Taiwan
    250 Institute of Photonic System, College of Photonics, National Chiao Tung University and National Yang Ming Chiao Tung University, 71150, Tainan, Taiwan
    251 rdf:type schema:Organization
    252 grid-institutes:grid.39158.36 schema:alternateName Department of Condensed Matter Physics, Graduate School of Science, Hokkaido University, 060-0810, Sapporo, Hokkaido, Japan
    253 schema:name Department of Condensed Matter Physics, Graduate School of Science, Hokkaido University, 060-0810, Sapporo, Hokkaido, Japan
    254 International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 305-0044, Tsukuba, Ibaraki, Japan
    255 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...