Interlayer charge transport controlled by exciton–trion coherent coupling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Sangeeth Kallatt, Sarthak Das, Suman Chatterjee, Kausik Majumdar

ABSTRACT

The possibility of electrical manipulation and detection of a charged exciton (trion) before its radiative recombination makes it promising for excitonic devices. Using a few-layer graphene/monolayer WS2/monolayer graphene vertical heterojunction, we report interlayer charge transport from top few-layer graphene to bottom monolayer graphene, mediated by a coherently formed trion state. This is achieved by using a resonant excitation and varying the sample temperature; the resulting change in the WS2 bandgap allows us to scan the excitation around the exciton–trion spectral overlap with high spectral resolution. By correlating the vertical photocurrent and in situ photoluminescence features at the heterojunction as a function of the spectral position of the excitation, we show that (1) trions are anomalously stable at the junction even up to 463 K due to enhanced doping, and (2) the photocurrent results from the ultrafast formation of a trion through exciton–trion coherent coupling, followed by its fast interlayer transport. The demonstration of coherent formation, high stabilization, vertical transportation, and electrical detection of trions marks a step toward room-temperature trionics. More... »

PAGES

15

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41699-019-0097-3

DOI

http://dx.doi.org/10.1038/s41699-019-0097-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113215553


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Institute of Science Bangalore", 
          "id": "https://www.grid.ac/institutes/grid.34980.36", 
          "name": [
            "Department of Electrical Communication Engineering, Indian Institute of Science, 560012, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kallatt", 
        "givenName": "Sangeeth", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Science Bangalore", 
          "id": "https://www.grid.ac/institutes/grid.34980.36", 
          "name": [
            "Department of Electrical Communication Engineering, Indian Institute of Science, 560012, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Das", 
        "givenName": "Sarthak", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Science Bangalore", 
          "id": "https://www.grid.ac/institutes/grid.34980.36", 
          "name": [
            "Department of Electrical Communication Engineering, Indian Institute of Science, 560012, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chatterjee", 
        "givenName": "Suman", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Science Bangalore", 
          "id": "https://www.grid.ac/institutes/grid.34980.36", 
          "name": [
            "Department of Electrical Communication Engineering, Indian Institute of Science, 560012, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Majumdar", 
        "givenName": "Kausik", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nnano.2013.151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003857275", 
          "https://doi.org/10.1038/nnano.2013.151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn405826k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006791107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2014.167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006918243", 
          "https://doi.org/10.1038/nnano.2014.167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.075413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007585782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.075413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007585782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.155431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008447928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.155431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008447928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009145791", 
          "https://doi.org/10.1038/nmat3505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.041401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009399660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.041401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009399660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.115317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009735278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.115317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009735278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn505736z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009964271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0749-6036(89)90382-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010166743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0749-6036(89)90382-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010166743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.161403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014668061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.161403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014668061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.216804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015773425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.216804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015773425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.201302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015982724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.201302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015982724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.165335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017884031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.165335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017884031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl502339q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021872797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.6b02041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029090048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja9037593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030514895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja9037593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030514895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms11504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032204608", 
          "https://doi.org/10.1038/ncomms11504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.115447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032685160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.115447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032685160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp402509w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033201925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037682572", 
          "https://doi.org/10.1038/nphys3324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.075310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050442322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.075310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050442322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms12715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051055301", 
          "https://doi.org/10.1038/ncomms12715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051148621", 
          "https://doi.org/10.1038/nmat4061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jpclett.6b00759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055114402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl503799t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.035332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060614299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.035332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060614299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.045407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060648804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.045407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060648804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.205423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060650484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.205423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060650484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.165301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060652772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.165301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060652772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.1752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.1752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/nanoph-2016-0165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084325770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2053-1583/aa70f9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085330061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.081403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091111268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.081403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091111268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41699-017-0035-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092142256", 
          "https://doi.org/10.1038/s41699-017-0035-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.7b06444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092247185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.205401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092484447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.205401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092484447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.8.011007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100469272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.8.011007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100469272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.97.205417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103976876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.97.205417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103976876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-6528/aac65c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104165486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-018-0357-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105810949", 
          "https://doi.org/10.1038/s41586-018-0357-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.121.057402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105983633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.121.057402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105983633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ted.2018.2864250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106369181"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "The possibility of electrical manipulation and detection of a charged exciton (trion) before its radiative recombination makes it promising for excitonic devices. Using a few-layer graphene/monolayer WS2/monolayer graphene vertical heterojunction, we report interlayer charge transport from top few-layer graphene to bottom monolayer graphene, mediated by a coherently formed trion state. This is achieved by using a resonant excitation and varying the sample temperature; the resulting change in the WS2 bandgap allows us to scan the excitation around the exciton\u2013trion spectral overlap with high spectral resolution. By correlating the vertical photocurrent and in situ photoluminescence features at the heterojunction as a function of the spectral position of the excitation, we show that (1) trions are anomalously stable at the junction even up to 463 K due to enhanced doping, and (2) the photocurrent results from the ultrafast formation of a trion through exciton\u2013trion coherent coupling, followed by its fast interlayer transport. The demonstration of coherent formation, high stabilization, vertical transportation, and electrical detection of trions marks a step toward room-temperature trionics.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41699-019-0097-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1290452", 
        "issn": [
          "2397-7132"
        ], 
        "name": "npj 2D Materials and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Interlayer charge transport controlled by exciton\u2013trion coherent coupling", 
    "pagination": "15", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41699-019-0097-3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a5aedf8a3da57c127f57d92814223c98e9c6e0393fe4473e523889f6c41fa236"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113215553"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41699-019-0097-3", 
      "https://app.dimensions.ai/details/publication/pub.1113215553"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56190_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41699-019-0097-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41699-019-0097-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41699-019-0097-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41699-019-0097-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41699-019-0097-3'


 

This table displays all metadata directly associated to this object as RDF triples.

218 TRIPLES      21 PREDICATES      71 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41699-019-0097-3 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N28c77c85282545888bbc949e251557af
4 schema:citation sg:pub.10.1038/ncomms11504
5 sg:pub.10.1038/ncomms12715
6 sg:pub.10.1038/nmat3505
7 sg:pub.10.1038/nmat4061
8 sg:pub.10.1038/nnano.2013.151
9 sg:pub.10.1038/nnano.2014.167
10 sg:pub.10.1038/nphys3324
11 sg:pub.10.1038/s41586-018-0357-y
12 sg:pub.10.1038/s41699-017-0035-1
13 https://doi.org/10.1016/0749-6036(89)90382-0
14 https://doi.org/10.1021/acs.jpclett.6b00759
15 https://doi.org/10.1021/acs.nanolett.6b02041
16 https://doi.org/10.1021/acsnano.7b06444
17 https://doi.org/10.1021/ja9037593
18 https://doi.org/10.1021/jp402509w
19 https://doi.org/10.1021/nl502339q
20 https://doi.org/10.1021/nl503799t
21 https://doi.org/10.1021/nn405826k
22 https://doi.org/10.1021/nn505736z
23 https://doi.org/10.1088/1361-6528/aac65c
24 https://doi.org/10.1088/2053-1583/aa70f9
25 https://doi.org/10.1103/physrevb.65.165335
26 https://doi.org/10.1103/physrevb.72.035332
27 https://doi.org/10.1103/physrevb.76.155431
28 https://doi.org/10.1103/physrevb.79.115447
29 https://doi.org/10.1103/physrevb.85.115317
30 https://doi.org/10.1103/physrevb.85.161403
31 https://doi.org/10.1103/physrevb.89.201302
32 https://doi.org/10.1103/physrevb.90.075413
33 https://doi.org/10.1103/physrevb.91.075310
34 https://doi.org/10.1103/physrevb.93.041401
35 https://doi.org/10.1103/physrevb.93.045407
36 https://doi.org/10.1103/physrevb.93.205423
37 https://doi.org/10.1103/physrevb.94.165301
38 https://doi.org/10.1103/physrevb.96.081403
39 https://doi.org/10.1103/physrevb.96.205401
40 https://doi.org/10.1103/physrevb.97.205417
41 https://doi.org/10.1103/physrevlett.112.216804
42 https://doi.org/10.1103/physrevlett.121.057402
43 https://doi.org/10.1103/physrevlett.71.1752
44 https://doi.org/10.1103/physrevlett.84.187
45 https://doi.org/10.1103/physrevx.8.011007
46 https://doi.org/10.1109/ted.2018.2864250
47 https://doi.org/10.1515/nanoph-2016-0165
48 schema:datePublished 2019-12
49 schema:datePublishedReg 2019-12-01
50 schema:description The possibility of electrical manipulation and detection of a charged exciton (trion) before its radiative recombination makes it promising for excitonic devices. Using a few-layer graphene/monolayer WS2/monolayer graphene vertical heterojunction, we report interlayer charge transport from top few-layer graphene to bottom monolayer graphene, mediated by a coherently formed trion state. This is achieved by using a resonant excitation and varying the sample temperature; the resulting change in the WS2 bandgap allows us to scan the excitation around the exciton–trion spectral overlap with high spectral resolution. By correlating the vertical photocurrent and in situ photoluminescence features at the heterojunction as a function of the spectral position of the excitation, we show that (1) trions are anomalously stable at the junction even up to 463 K due to enhanced doping, and (2) the photocurrent results from the ultrafast formation of a trion through exciton–trion coherent coupling, followed by its fast interlayer transport. The demonstration of coherent formation, high stabilization, vertical transportation, and electrical detection of trions marks a step toward room-temperature trionics.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree false
54 schema:isPartOf N842c123d20a249b4ba986632cfed791d
55 N96bfad1e12654402a7478cd0f95e2cd8
56 sg:journal.1290452
57 schema:name Interlayer charge transport controlled by exciton–trion coherent coupling
58 schema:pagination 15
59 schema:productId N49d8bd9a09a7431eb0c8746b10c7619b
60 N654eaf3bb4504fedb879b41cb4aa8f4e
61 Nbd3e7505009a4e96bc2dbfab81189531
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113215553
63 https://doi.org/10.1038/s41699-019-0097-3
64 schema:sdDatePublished 2019-04-15T09:24
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N073df03b73d544f6b8a523aca75e68cb
67 schema:url https://www.nature.com/articles/s41699-019-0097-3
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N073df03b73d544f6b8a523aca75e68cb schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N1016ff10795d4ffd87f95e62665b2aab schema:affiliation https://www.grid.ac/institutes/grid.34980.36
74 schema:familyName Kallatt
75 schema:givenName Sangeeth
76 rdf:type schema:Person
77 N28c77c85282545888bbc949e251557af rdf:first N1016ff10795d4ffd87f95e62665b2aab
78 rdf:rest N66fd311e3d104413bd234ceb99d11de7
79 N49d8bd9a09a7431eb0c8746b10c7619b schema:name doi
80 schema:value 10.1038/s41699-019-0097-3
81 rdf:type schema:PropertyValue
82 N654eaf3bb4504fedb879b41cb4aa8f4e schema:name dimensions_id
83 schema:value pub.1113215553
84 rdf:type schema:PropertyValue
85 N66b24660cf8346c6a9d5634e10e4512e rdf:first N6dc9b95baaba4fa7aa4861423790f603
86 rdf:rest N85add29f97c0441c9b0ad3660ef69807
87 N66fd311e3d104413bd234ceb99d11de7 rdf:first Nce57913c580d4d96893c8f03071b4bc0
88 rdf:rest N66b24660cf8346c6a9d5634e10e4512e
89 N6dc9b95baaba4fa7aa4861423790f603 schema:affiliation https://www.grid.ac/institutes/grid.34980.36
90 schema:familyName Chatterjee
91 schema:givenName Suman
92 rdf:type schema:Person
93 N742b4650e1c24cc6a62717177c7973e8 schema:affiliation https://www.grid.ac/institutes/grid.34980.36
94 schema:familyName Majumdar
95 schema:givenName Kausik
96 rdf:type schema:Person
97 N842c123d20a249b4ba986632cfed791d schema:issueNumber 1
98 rdf:type schema:PublicationIssue
99 N85add29f97c0441c9b0ad3660ef69807 rdf:first N742b4650e1c24cc6a62717177c7973e8
100 rdf:rest rdf:nil
101 N96bfad1e12654402a7478cd0f95e2cd8 schema:volumeNumber 3
102 rdf:type schema:PublicationVolume
103 Nbd3e7505009a4e96bc2dbfab81189531 schema:name readcube_id
104 schema:value a5aedf8a3da57c127f57d92814223c98e9c6e0393fe4473e523889f6c41fa236
105 rdf:type schema:PropertyValue
106 Nce57913c580d4d96893c8f03071b4bc0 schema:affiliation https://www.grid.ac/institutes/grid.34980.36
107 schema:familyName Das
108 schema:givenName Sarthak
109 rdf:type schema:Person
110 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
111 schema:name Engineering
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
114 schema:name Materials Engineering
115 rdf:type schema:DefinedTerm
116 sg:journal.1290452 schema:issn 2397-7132
117 schema:name npj 2D Materials and Applications
118 rdf:type schema:Periodical
119 sg:pub.10.1038/ncomms11504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032204608
120 https://doi.org/10.1038/ncomms11504
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/ncomms12715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051055301
123 https://doi.org/10.1038/ncomms12715
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/nmat3505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009145791
126 https://doi.org/10.1038/nmat3505
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/nmat4061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051148621
129 https://doi.org/10.1038/nmat4061
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/nnano.2013.151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003857275
132 https://doi.org/10.1038/nnano.2013.151
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/nnano.2014.167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006918243
135 https://doi.org/10.1038/nnano.2014.167
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/nphys3324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037682572
138 https://doi.org/10.1038/nphys3324
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/s41586-018-0357-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1105810949
141 https://doi.org/10.1038/s41586-018-0357-y
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/s41699-017-0035-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092142256
144 https://doi.org/10.1038/s41699-017-0035-1
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/0749-6036(89)90382-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010166743
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1021/acs.jpclett.6b00759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055114402
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1021/acs.nanolett.6b02041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029090048
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1021/acsnano.7b06444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092247185
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1021/ja9037593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030514895
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1021/jp402509w schema:sameAs https://app.dimensions.ai/details/publication/pub.1033201925
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1021/nl502339q schema:sameAs https://app.dimensions.ai/details/publication/pub.1021872797
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1021/nl503799t schema:sameAs https://app.dimensions.ai/details/publication/pub.1056221072
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1021/nn405826k schema:sameAs https://app.dimensions.ai/details/publication/pub.1006791107
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1021/nn505736z schema:sameAs https://app.dimensions.ai/details/publication/pub.1009964271
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1088/1361-6528/aac65c schema:sameAs https://app.dimensions.ai/details/publication/pub.1104165486
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1088/2053-1583/aa70f9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085330061
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevb.65.165335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017884031
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrevb.72.035332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060614299
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevb.76.155431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008447928
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrevb.79.115447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032685160
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrevb.85.115317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009735278
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevb.85.161403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014668061
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevb.89.201302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015982724
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevb.90.075413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007585782
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevb.91.075310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050442322
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevb.93.041401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009399660
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevb.93.045407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060648804
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevb.93.205423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060650484
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevb.94.165301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060652772
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevb.96.081403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091111268
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physrevb.96.205401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092484447
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevb.97.205417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103976876
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrevlett.112.216804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015773425
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physrevlett.121.057402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105983633
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physrevlett.71.1752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060807547
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physrevlett.84.187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060820811
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physrevx.8.011007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100469272
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1109/ted.2018.2864250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106369181
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1515/nanoph-2016-0165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084325770
215 rdf:type schema:CreativeWork
216 https://www.grid.ac/institutes/grid.34980.36 schema:alternateName Indian Institute of Science Bangalore
217 schema:name Department of Electrical Communication Engineering, Indian Institute of Science, 560012, Bangalore, India
218 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...