MoS2 photodetectors integrated with photonic circuits View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Juan Francisco Gonzalez Marin, Dmitrii Unuchek, Kenji Watanabe, Takashi Taniguchi, Andras Kis

ABSTRACT

In recent years, two-dimensional materials have risen as an attractive platform for integrated optoelectronics, due to their atomic scale thickness, favorable electrical, mechanical, and optical properties. In particular, graphene has been exploited as an ultrafast light modulator and photodetector, operating at telecommunication wavelengths. However, materials with larger bandgaps are required for light detection in the visible range of the spectrum, with wide applications in space communication, industrial quality controls, light sensing, etc. Even though TMDC-based light emitting and detecting devices in the visible spectrum have already been realized, efficient light absorption and photocurrent generation on integrated devices has not been achieved yet. Here, we demonstrate the integration of an ultrasensitive MoS2 photodetector with a silicon nitride photonic circuit. In contrast to the limited vertical light absorption, we observe near-unity lateral absorption, which results in even higher responsivity. By fabricating an alternative device where the MoS2 semiconducting channel is combined with a hexagonal boron nitride (h-BN) substrate, we significantly improve the speed of the photodetector. Low power operation is further achieved in a third device with graphene local gates. These results pave the way for future TMDC-based integrated optoelectronic devices. More... »

PAGES

14

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41699-019-0096-4

DOI

http://dx.doi.org/10.1038/s41699-019-0096-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113055572


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "\u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne", 
          "id": "https://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "Electrical Engineering Institute, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland", 
            "Institute of Materials Science and Engineering, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marin", 
        "givenName": "Juan Francisco Gonzalez", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne", 
          "id": "https://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "Electrical Engineering Institute, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland", 
            "Institute of Materials Science and Engineering, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Unuchek", 
        "givenName": "Dmitrii", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "National Institute for Materials Science, 1-1 Namiki, 305-0044, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanabe", 
        "givenName": "Kenji", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "National Institute for Materials Science, 1-1 Namiki, 305-0044, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taniguchi", 
        "givenName": "Takashi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne", 
          "id": "https://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "Electrical Engineering Institute, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland", 
            "Institute of Materials Science and Engineering, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kis", 
        "givenName": "Andras", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphoton.2013.253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003444244", 
          "https://doi.org/10.1038/nphoton.2013.253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.136805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004648868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.136805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004648868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl4046922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004811640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2013.183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006235221", 
          "https://doi.org/10.1038/nphoton.2013.183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.89", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011423110", 
          "https://doi.org/10.1038/nnano.2010.89"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.89", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011423110", 
          "https://doi.org/10.1038/nnano.2010.89"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn203879f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012167515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201503340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016916126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn500480u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017362904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2015.282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018613039", 
          "https://doi.org/10.1038/nphoton.2015.282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl502339q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021872797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2013.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023181230", 
          "https://doi.org/10.1038/nnano.2013.100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2016.15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028127334", 
          "https://doi.org/10.1038/nphoton.2016.15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028219354", 
          "https://doi.org/10.1038/nnano.2012.193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2010.186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031313355", 
          "https://doi.org/10.1038/nphoton.2010.186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2010.186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031313355", 
          "https://doi.org/10.1038/nphoton.2010.186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl903868w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031417418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl903868w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031417418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl303321g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045325097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2014.175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046828708", 
          "https://doi.org/10.1038/nphoton.2014.175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047704758", 
          "https://doi.org/10.1038/nnano.2010.279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep07523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047999108", 
          "https://doi.org/10.1038/srep07523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/27/11/115705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059117040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.867687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061180173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jproc.2009.2014298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061297026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tdmr.2004.840160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061584027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eml.2017.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074213698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eml.2017.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074213698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eml.2017.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074213698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eml.2017.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074213698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-6641/32/2/025013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1087286861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2017.209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092353980", 
          "https://doi.org/10.1038/nnano.2017.209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2017.209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092353980", 
          "https://doi.org/10.1038/nnano.2017.209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-018-0357-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105810949", 
          "https://doi.org/10.1038/s41586-018-0357-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "In recent years, two-dimensional materials have risen as an attractive platform for integrated optoelectronics, due to their atomic scale thickness, favorable electrical, mechanical, and optical properties. In particular, graphene has been exploited as an ultrafast light modulator and photodetector, operating at telecommunication wavelengths. However, materials with larger bandgaps are required for light detection in the visible range of the spectrum, with wide applications in space communication, industrial quality controls, light sensing, etc. Even though TMDC-based light emitting and detecting devices in the visible spectrum have already been realized, efficient light absorption and photocurrent generation on integrated devices has not been achieved yet. Here, we demonstrate the integration of an ultrasensitive MoS2 photodetector with a silicon nitride photonic circuit. In contrast to the limited vertical light absorption, we observe near-unity lateral absorption, which results in even higher responsivity. By fabricating an alternative device where the MoS2 semiconducting channel is combined with a hexagonal boron nitride (h-BN) substrate, we significantly improve the speed of the photodetector. Low power operation is further achieved in a third device with graphene local gates. These results pave the way for future TMDC-based integrated optoelectronic devices.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41699-019-0096-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5495363", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7613061", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5495369", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5233084", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1290452", 
        "issn": [
          "2397-7132"
        ], 
        "name": "npj 2D Materials and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "MoS2 photodetectors integrated with photonic circuits", 
    "pagination": "14", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7e95c98c804c7b557f91d30c77ee8d52848fe588ecffa8a09f7e66e1c3f2a160"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41699-019-0096-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113055572"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41699-019-0096-4", 
      "https://app.dimensions.ai/details/publication/pub.1113055572"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68943_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41699-019-0096-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41699-019-0096-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41699-019-0096-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41699-019-0096-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41699-019-0096-4'


 

This table displays all metadata directly associated to this object as RDF triples.

189 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41699-019-0096-4 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ndd14056ae141469c99e4fe38e83bdde3
4 schema:citation sg:pub.10.1038/nnano.2010.279
5 sg:pub.10.1038/nnano.2010.89
6 sg:pub.10.1038/nnano.2012.193
7 sg:pub.10.1038/nnano.2013.100
8 sg:pub.10.1038/nnano.2017.209
9 sg:pub.10.1038/nphoton.2010.186
10 sg:pub.10.1038/nphoton.2013.183
11 sg:pub.10.1038/nphoton.2013.253
12 sg:pub.10.1038/nphoton.2014.175
13 sg:pub.10.1038/nphoton.2015.282
14 sg:pub.10.1038/nphoton.2016.15
15 sg:pub.10.1038/s41586-018-0357-y
16 sg:pub.10.1038/srep07523
17 https://doi.org/10.1002/adma.201503340
18 https://doi.org/10.1016/j.eml.2017.01.008
19 https://doi.org/10.1021/nl303321g
20 https://doi.org/10.1021/nl4046922
21 https://doi.org/10.1021/nl502339q
22 https://doi.org/10.1021/nl903868w
23 https://doi.org/10.1021/nn203879f
24 https://doi.org/10.1021/nn500480u
25 https://doi.org/10.1088/0957-4484/27/11/115705
26 https://doi.org/10.1088/1361-6641/32/2/025013
27 https://doi.org/10.1103/physrevlett.105.136805
28 https://doi.org/10.1109/5.867687
29 https://doi.org/10.1109/jproc.2009.2014298
30 https://doi.org/10.1109/tdmr.2004.840160
31 schema:datePublished 2019-12
32 schema:datePublishedReg 2019-12-01
33 schema:description In recent years, two-dimensional materials have risen as an attractive platform for integrated optoelectronics, due to their atomic scale thickness, favorable electrical, mechanical, and optical properties. In particular, graphene has been exploited as an ultrafast light modulator and photodetector, operating at telecommunication wavelengths. However, materials with larger bandgaps are required for light detection in the visible range of the spectrum, with wide applications in space communication, industrial quality controls, light sensing, etc. Even though TMDC-based light emitting and detecting devices in the visible spectrum have already been realized, efficient light absorption and photocurrent generation on integrated devices has not been achieved yet. Here, we demonstrate the integration of an ultrasensitive MoS2 photodetector with a silicon nitride photonic circuit. In contrast to the limited vertical light absorption, we observe near-unity lateral absorption, which results in even higher responsivity. By fabricating an alternative device where the MoS2 semiconducting channel is combined with a hexagonal boron nitride (h-BN) substrate, we significantly improve the speed of the photodetector. Low power operation is further achieved in a third device with graphene local gates. These results pave the way for future TMDC-based integrated optoelectronic devices.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N479e28a1d94d4b66b166cf19195d67a2
38 N4aea7afe681d4765903c8422bca4803a
39 sg:journal.1290452
40 schema:name MoS2 photodetectors integrated with photonic circuits
41 schema:pagination 14
42 schema:productId N8f33c674986641679ceb52c6f5358080
43 Nc467d28294e64aef9788aa01f47fffbd
44 Neb51f2ebce294148833fd94b81bc96df
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113055572
46 https://doi.org/10.1038/s41699-019-0096-4
47 schema:sdDatePublished 2019-04-11T13:22
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Nb77b616ca5d741978095805812c68a72
50 schema:url https://www.nature.com/articles/s41699-019-0096-4
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N00d7495fb2d74e52a2d121da7aa64b8d rdf:first Nf5fc63f34bb945caab6ce0f6cd30cf98
55 rdf:rest N9f4c955faa94436ab692ee1502b3d1ce
56 N479e28a1d94d4b66b166cf19195d67a2 schema:volumeNumber 3
57 rdf:type schema:PublicationVolume
58 N4aea7afe681d4765903c8422bca4803a schema:issueNumber 1
59 rdf:type schema:PublicationIssue
60 N6a94768f1b1241a6bd6a1eded9975d57 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
61 schema:familyName Taniguchi
62 schema:givenName Takashi
63 rdf:type schema:Person
64 N8f33c674986641679ceb52c6f5358080 schema:name doi
65 schema:value 10.1038/s41699-019-0096-4
66 rdf:type schema:PropertyValue
67 N9b78ef5209bb481a8e92812006b07c34 schema:affiliation https://www.grid.ac/institutes/grid.5333.6
68 schema:familyName Kis
69 schema:givenName Andras
70 rdf:type schema:Person
71 N9f4c955faa94436ab692ee1502b3d1ce rdf:first N6a94768f1b1241a6bd6a1eded9975d57
72 rdf:rest Nad4aa1f8de0844e39951cc1407081aac
73 Nad4aa1f8de0844e39951cc1407081aac rdf:first N9b78ef5209bb481a8e92812006b07c34
74 rdf:rest rdf:nil
75 Nb77b616ca5d741978095805812c68a72 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 Nc467d28294e64aef9788aa01f47fffbd schema:name dimensions_id
78 schema:value pub.1113055572
79 rdf:type schema:PropertyValue
80 Nc8b1c3967cda437fae86f0e5148f9b54 rdf:first Ncd06db443748475ea4b02b07c21d5931
81 rdf:rest N00d7495fb2d74e52a2d121da7aa64b8d
82 Ncd06db443748475ea4b02b07c21d5931 schema:affiliation https://www.grid.ac/institutes/grid.5333.6
83 schema:familyName Unuchek
84 schema:givenName Dmitrii
85 rdf:type schema:Person
86 Nd94947d3fa5542a98cf6e0a0794435a4 schema:affiliation https://www.grid.ac/institutes/grid.5333.6
87 schema:familyName Marin
88 schema:givenName Juan Francisco Gonzalez
89 rdf:type schema:Person
90 Ndd14056ae141469c99e4fe38e83bdde3 rdf:first Nd94947d3fa5542a98cf6e0a0794435a4
91 rdf:rest Nc8b1c3967cda437fae86f0e5148f9b54
92 Neb51f2ebce294148833fd94b81bc96df schema:name readcube_id
93 schema:value 7e95c98c804c7b557f91d30c77ee8d52848fe588ecffa8a09f7e66e1c3f2a160
94 rdf:type schema:PropertyValue
95 Nf5fc63f34bb945caab6ce0f6cd30cf98 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
96 schema:familyName Watanabe
97 schema:givenName Kenji
98 rdf:type schema:Person
99 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
100 schema:name Engineering
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
103 schema:name Materials Engineering
104 rdf:type schema:DefinedTerm
105 sg:grant.5233084 http://pending.schema.org/fundedItem sg:pub.10.1038/s41699-019-0096-4
106 rdf:type schema:MonetaryGrant
107 sg:grant.5495363 http://pending.schema.org/fundedItem sg:pub.10.1038/s41699-019-0096-4
108 rdf:type schema:MonetaryGrant
109 sg:grant.5495369 http://pending.schema.org/fundedItem sg:pub.10.1038/s41699-019-0096-4
110 rdf:type schema:MonetaryGrant
111 sg:grant.7613061 http://pending.schema.org/fundedItem sg:pub.10.1038/s41699-019-0096-4
112 rdf:type schema:MonetaryGrant
113 sg:journal.1290452 schema:issn 2397-7132
114 schema:name npj 2D Materials and Applications
115 rdf:type schema:Periodical
116 sg:pub.10.1038/nnano.2010.279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047704758
117 https://doi.org/10.1038/nnano.2010.279
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/nnano.2010.89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011423110
120 https://doi.org/10.1038/nnano.2010.89
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/nnano.2012.193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028219354
123 https://doi.org/10.1038/nnano.2012.193
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/nnano.2013.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023181230
126 https://doi.org/10.1038/nnano.2013.100
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/nnano.2017.209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092353980
129 https://doi.org/10.1038/nnano.2017.209
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/nphoton.2010.186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031313355
132 https://doi.org/10.1038/nphoton.2010.186
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/nphoton.2013.183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006235221
135 https://doi.org/10.1038/nphoton.2013.183
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/nphoton.2013.253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003444244
138 https://doi.org/10.1038/nphoton.2013.253
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/nphoton.2014.175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046828708
141 https://doi.org/10.1038/nphoton.2014.175
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nphoton.2015.282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018613039
144 https://doi.org/10.1038/nphoton.2015.282
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nphoton.2016.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028127334
147 https://doi.org/10.1038/nphoton.2016.15
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/s41586-018-0357-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1105810949
150 https://doi.org/10.1038/s41586-018-0357-y
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/srep07523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047999108
153 https://doi.org/10.1038/srep07523
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1002/adma.201503340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016916126
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.eml.2017.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074213698
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1021/nl303321g schema:sameAs https://app.dimensions.ai/details/publication/pub.1045325097
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1021/nl4046922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004811640
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1021/nl502339q schema:sameAs https://app.dimensions.ai/details/publication/pub.1021872797
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1021/nl903868w schema:sameAs https://app.dimensions.ai/details/publication/pub.1031417418
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1021/nn203879f schema:sameAs https://app.dimensions.ai/details/publication/pub.1012167515
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1021/nn500480u schema:sameAs https://app.dimensions.ai/details/publication/pub.1017362904
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1088/0957-4484/27/11/115705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059117040
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1088/1361-6641/32/2/025013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1087286861
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevlett.105.136805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004648868
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/5.867687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061180173
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/jproc.2009.2014298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061297026
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1109/tdmr.2004.840160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061584027
182 rdf:type schema:CreativeWork
183 https://www.grid.ac/institutes/grid.21941.3f schema:alternateName National Institute for Materials Science
184 schema:name National Institute for Materials Science, 1-1 Namiki, 305-0044, Tsukuba, Japan
185 rdf:type schema:Organization
186 https://www.grid.ac/institutes/grid.5333.6 schema:alternateName École Polytechnique Fédérale de Lausanne
187 schema:name Electrical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
188 Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
189 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...