Lithographically patterned metallic conduction in single-layer MoS2 via plasma processing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Michael G. Stanford, Yu-Chuan Lin, Maria Gabriela Sales, Anna N. Hoffman, Christopher T. Nelson, Kai Xiao, Stephen McDonnell, Philip D. Rack

ABSTRACT

Tailoring the electrical transport properties of two-dimensional transition metal dichalcogenides can enable the formation of atomically thin circuits. In this work, cyclic hydrogen and oxygen plasma exposures are utilized to introduce defects and oxidize MoS2 in a controlled manner. This results in the formation of sub-stochiometric MoO3−x, which transforms the semiconducting behavior to metallic conduction. To demonstrate functionality, single flakes of MoS2 were lithographically oxidized using electron beam lithography and subsequent plasma exposures. This enabled the formation of atomically thin inverters from a single flake of MoS2, which represents an advancement toward atomically thin circuitry. More... »

PAGES

13

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41699-019-0095-5

DOI

http://dx.doi.org/10.1038/s41699-019-0095-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112767731


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Tennessee at Knoxville", 
          "id": "https://www.grid.ac/institutes/grid.411461.7", 
          "name": [
            "Department of Materials Science and Engineering, University of Tennessee, 37996, Knoxville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stanford", 
        "givenName": "Michael G.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oak Ridge National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Yu-Chuan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Virginia", 
          "id": "https://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Materials Science and Engineering, University of Virginia, 22904, Charlottesville, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sales", 
        "givenName": "Maria Gabriela", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tennessee at Knoxville", 
          "id": "https://www.grid.ac/institutes/grid.411461.7", 
          "name": [
            "Department of Materials Science and Engineering, University of Tennessee, 37996, Knoxville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoffman", 
        "givenName": "Anna N.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oak Ridge National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nelson", 
        "givenName": "Christopher T.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oak Ridge National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiao", 
        "givenName": "Kai", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Virginia", 
          "id": "https://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Materials Science and Engineering, University of Virginia, 22904, Charlottesville, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McDonnell", 
        "givenName": "Stephen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oak Ridge National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Department of Materials Science and Engineering, University of Tennessee, 37996, Knoxville, TN, USA", 
            "Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rack", 
        "givenName": "Philip D.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1021/jp506964m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001438602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.5b00952", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003800104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep27276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004390416", 
          "https://doi.org/10.1038/srep27276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.136805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004648868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.136805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004648868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms6143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006171529", 
          "https://doi.org/10.1038/ncomms6143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2014.26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008703953", 
          "https://doi.org/10.1038/nnano.2014.26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.6b02263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013051518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn500064s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013761488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn203715c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020715326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep30481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020768413", 
          "https://doi.org/10.1038/srep30481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl5049753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021052429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl404389u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022404101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2053-1583/3/2/022002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023788251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4nr02142h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025749253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/3/2/010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039537197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2016.115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040045580", 
          "https://doi.org/10.1038/nnano.2016.115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201505070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041541417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.5b02069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041549611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047704758", 
          "https://doi.org/10.1038/nnano.2010.279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultramic.2011.10.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047828190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchem.1589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050119463", 
          "https://doi.org/10.1038/nchem.1589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.200700065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050310587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.200700065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050310587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.200700065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050310587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl2018178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053218712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl2018178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053218712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jpcc.6b03247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055111679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.5b01673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055120766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.6b04576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055122017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.6b02521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055137933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jacs.6b05940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055875835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/28/36/364002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059114280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.195411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060645904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.195411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060645904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7567/apex.10.035201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083731611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smtd.201600060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083866037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2053-1583/aa6b17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084601578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2017.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085412973", 
          "https://doi.org/10.1038/nnano.2017.100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2017.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085412973", 
          "https://doi.org/10.1038/nnano.2017.100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-6528/aa8081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090749007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201702829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090939606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jacs.7b07450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092359055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2053-1583/aab0cd", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101132161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/sciadv.aao5031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101318218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41699-018-0065-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105180803", 
          "https://doi.org/10.1038/s41699-018-0065-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Tailoring the electrical transport properties of two-dimensional transition metal dichalcogenides can enable the formation of atomically thin circuits. In this work, cyclic hydrogen and oxygen plasma exposures are utilized to introduce defects and oxidize MoS2 in a controlled manner. This results in the formation of sub-stochiometric MoO3\u2212x, which transforms the semiconducting behavior to metallic conduction. To demonstrate functionality, single flakes of MoS2 were lithographically oxidized using electron beam lithography and subsequent plasma exposures. This enabled the formation of atomically thin inverters from a single flake of MoS2, which represents an advancement toward atomically thin circuitry.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41699-019-0095-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4321426", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5543589", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1290452", 
        "issn": [
          "2397-7132"
        ], 
        "name": "npj 2D Materials and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Lithographically patterned metallic conduction in single-layer MoS2 via plasma processing", 
    "pagination": "13", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "de38a401a106357d08a3f8ddf9c5dcea842e60c7000118b97479e45bbd791a3a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41699-019-0095-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112767731"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41699-019-0095-5", 
      "https://app.dimensions.ai/details/publication/pub.1112767731"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29200_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41699-019-0095-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41699-019-0095-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41699-019-0095-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41699-019-0095-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41699-019-0095-5'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      21 PREDICATES      67 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41699-019-0095-5 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N4a6127148b1f45639e7432d7b9d227d1
4 schema:citation sg:pub.10.1038/nchem.1589
5 sg:pub.10.1038/ncomms6143
6 sg:pub.10.1038/nnano.2010.279
7 sg:pub.10.1038/nnano.2014.26
8 sg:pub.10.1038/nnano.2016.115
9 sg:pub.10.1038/nnano.2017.100
10 sg:pub.10.1038/s41699-018-0065-3
11 sg:pub.10.1038/srep27276
12 sg:pub.10.1038/srep30481
13 https://doi.org/10.1002/adfm.200700065
14 https://doi.org/10.1002/adfm.201702829
15 https://doi.org/10.1002/adma.201505070
16 https://doi.org/10.1002/smtd.201600060
17 https://doi.org/10.1016/j.ultramic.2011.10.016
18 https://doi.org/10.1021/acs.jpcc.6b03247
19 https://doi.org/10.1021/acs.nanolett.5b00952
20 https://doi.org/10.1021/acs.nanolett.5b01673
21 https://doi.org/10.1021/acs.nanolett.5b02069
22 https://doi.org/10.1021/acs.nanolett.6b02263
23 https://doi.org/10.1021/acs.nanolett.6b04576
24 https://doi.org/10.1021/acsnano.6b02521
25 https://doi.org/10.1021/jacs.6b05940
26 https://doi.org/10.1021/jacs.7b07450
27 https://doi.org/10.1021/jp506964m
28 https://doi.org/10.1021/nl2018178
29 https://doi.org/10.1021/nl404389u
30 https://doi.org/10.1021/nl5049753
31 https://doi.org/10.1021/nn203715c
32 https://doi.org/10.1021/nn500064s
33 https://doi.org/10.1039/c4nr02142h
34 https://doi.org/10.1088/0022-3719/3/2/010
35 https://doi.org/10.1088/0953-8984/28/36/364002
36 https://doi.org/10.1088/1361-6528/aa8081
37 https://doi.org/10.1088/2053-1583/3/2/022002
38 https://doi.org/10.1088/2053-1583/aa6b17
39 https://doi.org/10.1088/2053-1583/aab0cd
40 https://doi.org/10.1103/physrevb.91.195411
41 https://doi.org/10.1103/physrevlett.105.136805
42 https://doi.org/10.1126/sciadv.aao5031
43 https://doi.org/10.7567/apex.10.035201
44 schema:datePublished 2019-12
45 schema:datePublishedReg 2019-12-01
46 schema:description Tailoring the electrical transport properties of two-dimensional transition metal dichalcogenides can enable the formation of atomically thin circuits. In this work, cyclic hydrogen and oxygen plasma exposures are utilized to introduce defects and oxidize MoS2 in a controlled manner. This results in the formation of sub-stochiometric MoO3−x, which transforms the semiconducting behavior to metallic conduction. To demonstrate functionality, single flakes of MoS2 were lithographically oxidized using electron beam lithography and subsequent plasma exposures. This enabled the formation of atomically thin inverters from a single flake of MoS2, which represents an advancement toward atomically thin circuitry.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf N223937d6068d4391bde6b28603987031
51 N7811bcbe038f4e34b81e6d53b03c6b88
52 sg:journal.1290452
53 schema:name Lithographically patterned metallic conduction in single-layer MoS2 via plasma processing
54 schema:pagination 13
55 schema:productId N13e6c24902194ae69d692948a43e8fd4
56 N66804c8b34534f1f95df3a708f420ae3
57 N88b31e587962448283205c495dab9dbd
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112767731
59 https://doi.org/10.1038/s41699-019-0095-5
60 schema:sdDatePublished 2019-04-11T11:54
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N2268c0c648454e8786ed2deccd018603
63 schema:url https://www.nature.com/articles/s41699-019-0095-5
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N00582932dcf64c20919b3f96ea9b0d8a rdf:first N3357bda488154ae8b88e6497e1e8c713
68 rdf:rest Nb088405f804348108501de00ee41bb24
69 N04f4183cb84c4e9595ff92abf5e1d105 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
70 schema:familyName Rack
71 schema:givenName Philip D.
72 rdf:type schema:Person
73 N13e6c24902194ae69d692948a43e8fd4 schema:name readcube_id
74 schema:value de38a401a106357d08a3f8ddf9c5dcea842e60c7000118b97479e45bbd791a3a
75 rdf:type schema:PropertyValue
76 N223937d6068d4391bde6b28603987031 schema:volumeNumber 3
77 rdf:type schema:PublicationVolume
78 N2268c0c648454e8786ed2deccd018603 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N2d6bddac4cc94e61a61abea37d41c169 schema:affiliation https://www.grid.ac/institutes/grid.27755.32
81 schema:familyName McDonnell
82 schema:givenName Stephen
83 rdf:type schema:Person
84 N3357bda488154ae8b88e6497e1e8c713 schema:affiliation https://www.grid.ac/institutes/grid.411461.7
85 schema:familyName Hoffman
86 schema:givenName Anna N.
87 rdf:type schema:Person
88 N35ec9b508ab84c378f07dffad588c941 schema:affiliation https://www.grid.ac/institutes/grid.411461.7
89 schema:familyName Stanford
90 schema:givenName Michael G.
91 rdf:type schema:Person
92 N36a43f11f1104c7d8c9f8354518256c8 rdf:first N2d6bddac4cc94e61a61abea37d41c169
93 rdf:rest N74cd4ca5348c4f0c937f1956e6db52fa
94 N37225aa1bc51406ea7d45537833d920e schema:affiliation https://www.grid.ac/institutes/grid.135519.a
95 schema:familyName Xiao
96 schema:givenName Kai
97 rdf:type schema:Person
98 N4a6127148b1f45639e7432d7b9d227d1 rdf:first N35ec9b508ab84c378f07dffad588c941
99 rdf:rest Nc78cec51dd104f5e869ecbd03c63692f
100 N5c19dd60a3544f2fa20a70758ee6dfec schema:affiliation https://www.grid.ac/institutes/grid.27755.32
101 schema:familyName Sales
102 schema:givenName Maria Gabriela
103 rdf:type schema:Person
104 N6368a7541bba4c689cc6912912e46a35 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
105 schema:familyName Lin
106 schema:givenName Yu-Chuan
107 rdf:type schema:Person
108 N66804c8b34534f1f95df3a708f420ae3 schema:name dimensions_id
109 schema:value pub.1112767731
110 rdf:type schema:PropertyValue
111 N74cd4ca5348c4f0c937f1956e6db52fa rdf:first N04f4183cb84c4e9595ff92abf5e1d105
112 rdf:rest rdf:nil
113 N769eb5df1d8b427c8974f9c9e28f45ff rdf:first N5c19dd60a3544f2fa20a70758ee6dfec
114 rdf:rest N00582932dcf64c20919b3f96ea9b0d8a
115 N7811bcbe038f4e34b81e6d53b03c6b88 schema:issueNumber 1
116 rdf:type schema:PublicationIssue
117 N88b31e587962448283205c495dab9dbd schema:name doi
118 schema:value 10.1038/s41699-019-0095-5
119 rdf:type schema:PropertyValue
120 N9d758e918a9248a89856e235e95b7d66 rdf:first N37225aa1bc51406ea7d45537833d920e
121 rdf:rest N36a43f11f1104c7d8c9f8354518256c8
122 Nb088405f804348108501de00ee41bb24 rdf:first Nfee1bdb781404ae09c91cb4cee562d1a
123 rdf:rest N9d758e918a9248a89856e235e95b7d66
124 Nc78cec51dd104f5e869ecbd03c63692f rdf:first N6368a7541bba4c689cc6912912e46a35
125 rdf:rest N769eb5df1d8b427c8974f9c9e28f45ff
126 Nfee1bdb781404ae09c91cb4cee562d1a schema:affiliation https://www.grid.ac/institutes/grid.135519.a
127 schema:familyName Nelson
128 schema:givenName Christopher T.
129 rdf:type schema:Person
130 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
131 schema:name Engineering
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
134 schema:name Materials Engineering
135 rdf:type schema:DefinedTerm
136 sg:grant.4321426 http://pending.schema.org/fundedItem sg:pub.10.1038/s41699-019-0095-5
137 rdf:type schema:MonetaryGrant
138 sg:grant.5543589 http://pending.schema.org/fundedItem sg:pub.10.1038/s41699-019-0095-5
139 rdf:type schema:MonetaryGrant
140 sg:journal.1290452 schema:issn 2397-7132
141 schema:name npj 2D Materials and Applications
142 rdf:type schema:Periodical
143 sg:pub.10.1038/nchem.1589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050119463
144 https://doi.org/10.1038/nchem.1589
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/ncomms6143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006171529
147 https://doi.org/10.1038/ncomms6143
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/nnano.2010.279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047704758
150 https://doi.org/10.1038/nnano.2010.279
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nnano.2014.26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008703953
153 https://doi.org/10.1038/nnano.2014.26
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/nnano.2016.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040045580
156 https://doi.org/10.1038/nnano.2016.115
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nnano.2017.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085412973
159 https://doi.org/10.1038/nnano.2017.100
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/s41699-018-0065-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105180803
162 https://doi.org/10.1038/s41699-018-0065-3
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/srep27276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004390416
165 https://doi.org/10.1038/srep27276
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/srep30481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020768413
168 https://doi.org/10.1038/srep30481
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1002/adfm.200700065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050310587
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1002/adfm.201702829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090939606
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1002/adma.201505070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041541417
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1002/smtd.201600060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083866037
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.ultramic.2011.10.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047828190
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1021/acs.jpcc.6b03247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055111679
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1021/acs.nanolett.5b00952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003800104
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1021/acs.nanolett.5b01673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055120766
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1021/acs.nanolett.5b02069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041549611
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1021/acs.nanolett.6b02263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013051518
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1021/acs.nanolett.6b04576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055122017
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1021/acsnano.6b02521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055137933
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1021/jacs.6b05940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055875835
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1021/jacs.7b07450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092359055
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1021/jp506964m schema:sameAs https://app.dimensions.ai/details/publication/pub.1001438602
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1021/nl2018178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053218712
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1021/nl404389u schema:sameAs https://app.dimensions.ai/details/publication/pub.1022404101
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1021/nl5049753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021052429
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1021/nn203715c schema:sameAs https://app.dimensions.ai/details/publication/pub.1020715326
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1021/nn500064s schema:sameAs https://app.dimensions.ai/details/publication/pub.1013761488
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1039/c4nr02142h schema:sameAs https://app.dimensions.ai/details/publication/pub.1025749253
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1088/0022-3719/3/2/010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039537197
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1088/0953-8984/28/36/364002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059114280
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1088/1361-6528/aa8081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090749007
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1088/2053-1583/3/2/022002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023788251
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1088/2053-1583/aa6b17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084601578
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1088/2053-1583/aab0cd schema:sameAs https://app.dimensions.ai/details/publication/pub.1101132161
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1103/physrevb.91.195411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060645904
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1103/physrevlett.105.136805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004648868
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1126/sciadv.aao5031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101318218
229 rdf:type schema:CreativeWork
230 https://doi.org/10.7567/apex.10.035201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083731611
231 rdf:type schema:CreativeWork
232 https://www.grid.ac/institutes/grid.135519.a schema:alternateName Oak Ridge National Laboratory
233 schema:name Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA
234 Department of Materials Science and Engineering, University of Tennessee, 37996, Knoxville, TN, USA
235 rdf:type schema:Organization
236 https://www.grid.ac/institutes/grid.27755.32 schema:alternateName University of Virginia
237 schema:name Department of Materials Science and Engineering, University of Virginia, 22904, Charlottesville, VA, USA
238 rdf:type schema:Organization
239 https://www.grid.ac/institutes/grid.411461.7 schema:alternateName University of Tennessee at Knoxville
240 schema:name Department of Materials Science and Engineering, University of Tennessee, 37996, Knoxville, TN, USA
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...