Mechanism of substrate-induced anisotropic growth of monolayer WS2 by kinetic Monte Carlo simulations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Lixiang Wu, Weihuang Yang, Gaofeng Wang

ABSTRACT

Controlled anisotropic growth of two-dimensional materials provides an approach for the synthesis of large single crystals and nanoribbons, which are promising for applications as low-dimensional semiconductors and in next-generation optoelectronic devices. In particular, the anisotropic growth of transition metal dichalcogenides induced by the substrate is of great interest due to its operability. To date, however, their substrate-induced anisotropic growth is typically driven by the optimization of experimental parameters without uncovering the fundamental mechanism. Here, the anisotropic growth of monolayer tungsten disulfide on an ST-X quartz substrate is achieved by chemical vapor deposition, and the mechanism of substrate-induced anisotropic growth is examined by kinetic Monte Carlo simulations. Results show that, besides the variation of substrate adsorption, the chalcogen to metal (C/M) ratio is a major contributor to the large growth anisotropy and the polarization of undergrowth and overgrowth; either perfect isotropy or high anisotropy can be expected when the C/M ratio equals 2.0 by properly controlling the linear relationship between gas flux and temperature. The anisotropic growth of WS2 is governed by the chalcogen to metal ratio. A team led by Gaofeng Wang at Hangzhou Dianzi University established a substrate-sensitive kinetic Monte Carlo (kMC) model that accounts for the local substrate effects on adsorption, desorption, and diffusion processes, to study the growth anisotropy in atomically thin transition metal dichalcogenides. Using the representative case of chemical vapor deposition growth of monolayer WS2 on ST-X quartz, the physical mechanism of substrate-induced anisotropic growth was investigated using first-principles calculations to obtain the energy parameters for modeling the kinetic events, followed by kinetic quantum Monte Carlo simulations within the kMC framework. The driving force of the anisotropic growth behavior was found to be the chalcogen to metal ratio, which could be controlled by tailoring the gas flux and temperature. More... »

PAGES

6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41699-019-0088-4

DOI

http://dx.doi.org/10.1038/s41699-019-0088-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111768428


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hangzhou Dianzi University", 
          "id": "https://www.grid.ac/institutes/grid.411963.8", 
          "name": [
            "School of Electronics and Information, Hangzhou Dianzi University, 310018, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Lixiang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hangzhou Dianzi University", 
          "id": "https://www.grid.ac/institutes/grid.411963.8", 
          "name": [
            "School of Electronics and Information, Hangzhou Dianzi University, 310018, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Weihuang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hangzhou Dianzi University", 
          "id": "https://www.grid.ac/institutes/grid.411963.8", 
          "name": [
            "School of Electronics and Information, Hangzhou Dianzi University, 310018, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Gaofeng", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.mattod.2016.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002345559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1208455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002839480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.matsci.32.012102.110247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009752777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn403454e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012894732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5cs00507h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016232877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pcrysgrow.2016.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024565374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.5b03043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031956874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpc.2014.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032808560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm5025662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036802216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/21/39/395502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037182159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/21/39/395502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037182159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.5b07916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041233459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4974072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049774683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4cs00256c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050456475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.6b00986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055121444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2053-1583/3/2/025029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059182880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/58.20455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061190507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-648x/aa680e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084172614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms14985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084750436", 
          "https://doi.org/10.1038/ncomms14985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7ra01748k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085117612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms15135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085128703", 
          "https://doi.org/10.1038/ncomms15135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2053-1583/aa6beb", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085299247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2017.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085412973", 
          "https://doi.org/10.1038/nnano.2017.100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2017.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085412973", 
          "https://doi.org/10.1038/nnano.2017.100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/natrevmats.2017.33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085993311", 
          "https://doi.org/10.1038/natrevmats.2017.33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.7b02737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091688498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-017-00516-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091790091", 
          "https://doi.org/10.1038/s41467-017-00516-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-017-01298-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092371148", 
          "https://doi.org/10.1038/s41467-017-01298-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.187402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092484475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.187402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092484475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2053-1583/aaa1c5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099816194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41565-018-0063-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101086668", 
          "https://doi.org/10.1038/s41565-018-0063-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41565-018-0063-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101086668", 
          "https://doi.org/10.1038/s41565-018-0063-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adom.201701347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101718353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41563-018-0055-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103549260", 
          "https://doi.org/10.1038/s41563-018-0055-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c8nr02246a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106048869"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Controlled anisotropic growth of two-dimensional materials provides an approach for the synthesis of large single crystals and nanoribbons, which are promising for applications as low-dimensional semiconductors and in next-generation optoelectronic devices. In particular, the anisotropic growth of transition metal dichalcogenides induced by the substrate is of great interest due to its operability. To date, however, their substrate-induced anisotropic growth is typically driven by the optimization of experimental parameters without uncovering the fundamental mechanism. Here, the anisotropic growth of monolayer tungsten disulfide on an ST-X quartz substrate is achieved by chemical vapor deposition, and the mechanism of substrate-induced anisotropic growth is examined by kinetic Monte Carlo simulations. Results show that, besides the variation of substrate adsorption, the chalcogen to metal (C/M) ratio is a major contributor to the large growth anisotropy and the polarization of undergrowth and overgrowth; either perfect isotropy or high anisotropy can be expected when the C/M ratio equals 2.0 by properly controlling the linear relationship between gas flux and temperature. The anisotropic growth of WS2 is governed by the chalcogen to metal ratio. A team led by Gaofeng Wang at Hangzhou Dianzi University established a substrate-sensitive kinetic Monte Carlo (kMC) model that accounts for the local substrate effects on adsorption, desorption, and diffusion processes, to study the growth anisotropy in atomically thin transition metal dichalcogenides. Using the representative case of chemical vapor deposition growth of monolayer WS2 on ST-X quartz, the physical mechanism of substrate-induced anisotropic growth was investigated using first-principles calculations to obtain the energy parameters for modeling the kinetic events, followed by kinetic quantum Monte Carlo simulations within the kMC framework. The driving force of the anisotropic growth behavior was found to be the chalcogen to metal ratio, which could be controlled by tailoring the gas flux and temperature.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41699-019-0088-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1290452", 
        "issn": [
          "2397-7132"
        ], 
        "name": "npj 2D Materials and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Mechanism of substrate-induced anisotropic growth of monolayer WS2 by kinetic Monte Carlo simulations", 
    "pagination": "6", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e97ee45694c1674d56063302533c0b8e88843aee4a5ff706f17c79cdab5da3cf"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41699-019-0088-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111768428"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41699-019-0088-4", 
      "https://app.dimensions.ai/details/publication/pub.1111768428"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000326_0000000326/records_68439_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41699-019-0088-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41699-019-0088-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41699-019-0088-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41699-019-0088-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41699-019-0088-4'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41699-019-0088-4 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nda7e2cbbcdd641d3b10017ab81621bca
4 schema:citation sg:pub.10.1038/natrevmats.2017.33
5 sg:pub.10.1038/ncomms14985
6 sg:pub.10.1038/ncomms15135
7 sg:pub.10.1038/nnano.2017.100
8 sg:pub.10.1038/s41467-017-00516-5
9 sg:pub.10.1038/s41467-017-01298-6
10 sg:pub.10.1038/s41563-018-0055-z
11 sg:pub.10.1038/s41565-018-0063-9
12 https://doi.org/10.1002/adom.201701347
13 https://doi.org/10.1016/j.cpc.2014.04.003
14 https://doi.org/10.1016/j.mattod.2016.10.002
15 https://doi.org/10.1016/j.pcrysgrow.2016.06.002
16 https://doi.org/10.1021/acs.nanolett.6b00986
17 https://doi.org/10.1021/acs.nanolett.7b02737
18 https://doi.org/10.1021/acsnano.5b03043
19 https://doi.org/10.1021/acsnano.5b07916
20 https://doi.org/10.1021/cm5025662
21 https://doi.org/10.1021/nn403454e
22 https://doi.org/10.1039/c4cs00256c
23 https://doi.org/10.1039/c5cs00507h
24 https://doi.org/10.1039/c7ra01748k
25 https://doi.org/10.1039/c8nr02246a
26 https://doi.org/10.1063/1.4974072
27 https://doi.org/10.1088/0953-8984/21/39/395502
28 https://doi.org/10.1088/1361-648x/aa680e
29 https://doi.org/10.1088/2053-1583/3/2/025029
30 https://doi.org/10.1088/2053-1583/aa6beb
31 https://doi.org/10.1088/2053-1583/aaa1c5
32 https://doi.org/10.1103/physrevlett.119.187402
33 https://doi.org/10.1109/58.20455
34 https://doi.org/10.1126/science.1208455
35 https://doi.org/10.1146/annurev.matsci.32.012102.110247
36 schema:datePublished 2019-12
37 schema:datePublishedReg 2019-12-01
38 schema:description Controlled anisotropic growth of two-dimensional materials provides an approach for the synthesis of large single crystals and nanoribbons, which are promising for applications as low-dimensional semiconductors and in next-generation optoelectronic devices. In particular, the anisotropic growth of transition metal dichalcogenides induced by the substrate is of great interest due to its operability. To date, however, their substrate-induced anisotropic growth is typically driven by the optimization of experimental parameters without uncovering the fundamental mechanism. Here, the anisotropic growth of monolayer tungsten disulfide on an ST-X quartz substrate is achieved by chemical vapor deposition, and the mechanism of substrate-induced anisotropic growth is examined by kinetic Monte Carlo simulations. Results show that, besides the variation of substrate adsorption, the chalcogen to metal (C/M) ratio is a major contributor to the large growth anisotropy and the polarization of undergrowth and overgrowth; either perfect isotropy or high anisotropy can be expected when the C/M ratio equals 2.0 by properly controlling the linear relationship between gas flux and temperature. The anisotropic growth of WS2 is governed by the chalcogen to metal ratio. A team led by Gaofeng Wang at Hangzhou Dianzi University established a substrate-sensitive kinetic Monte Carlo (kMC) model that accounts for the local substrate effects on adsorption, desorption, and diffusion processes, to study the growth anisotropy in atomically thin transition metal dichalcogenides. Using the representative case of chemical vapor deposition growth of monolayer WS2 on ST-X quartz, the physical mechanism of substrate-induced anisotropic growth was investigated using first-principles calculations to obtain the energy parameters for modeling the kinetic events, followed by kinetic quantum Monte Carlo simulations within the kMC framework. The driving force of the anisotropic growth behavior was found to be the chalcogen to metal ratio, which could be controlled by tailoring the gas flux and temperature.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf N1e60c637bcdd42da8758a8a11baa8970
43 N95c254be5a37410fbad069d2eb384855
44 sg:journal.1290452
45 schema:name Mechanism of substrate-induced anisotropic growth of monolayer WS2 by kinetic Monte Carlo simulations
46 schema:pagination 6
47 schema:productId Nb3ca81d42677473a8e07bf5c6d4e370b
48 Ncf600188073f4990bc2caf5ec0fa55be
49 Nf980c5bb49004eeab823762baf403085
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111768428
51 https://doi.org/10.1038/s41699-019-0088-4
52 schema:sdDatePublished 2019-04-11T08:58
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Na9b5a6470f7042b09d3c9482b16baec0
55 schema:url https://www.nature.com/articles/s41699-019-0088-4
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N1e60c637bcdd42da8758a8a11baa8970 schema:volumeNumber 3
60 rdf:type schema:PublicationVolume
61 N1f1fdb4d473c4f6fb6e3f29719bf2400 schema:affiliation https://www.grid.ac/institutes/grid.411963.8
62 schema:familyName Wu
63 schema:givenName Lixiang
64 rdf:type schema:Person
65 N4d03aa58bfbe4f91b1608605bc21cfd7 schema:affiliation https://www.grid.ac/institutes/grid.411963.8
66 schema:familyName Wang
67 schema:givenName Gaofeng
68 rdf:type schema:Person
69 N5781d29899164a1bba56a8209f897159 rdf:first N9a23c88ced9a42d5993509165d946da5
70 rdf:rest N879753672a8c4509840162e66bad2b97
71 N879753672a8c4509840162e66bad2b97 rdf:first N4d03aa58bfbe4f91b1608605bc21cfd7
72 rdf:rest rdf:nil
73 N95c254be5a37410fbad069d2eb384855 schema:issueNumber 1
74 rdf:type schema:PublicationIssue
75 N9a23c88ced9a42d5993509165d946da5 schema:affiliation https://www.grid.ac/institutes/grid.411963.8
76 schema:familyName Yang
77 schema:givenName Weihuang
78 rdf:type schema:Person
79 Na9b5a6470f7042b09d3c9482b16baec0 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 Nb3ca81d42677473a8e07bf5c6d4e370b schema:name doi
82 schema:value 10.1038/s41699-019-0088-4
83 rdf:type schema:PropertyValue
84 Ncf600188073f4990bc2caf5ec0fa55be schema:name readcube_id
85 schema:value e97ee45694c1674d56063302533c0b8e88843aee4a5ff706f17c79cdab5da3cf
86 rdf:type schema:PropertyValue
87 Nda7e2cbbcdd641d3b10017ab81621bca rdf:first N1f1fdb4d473c4f6fb6e3f29719bf2400
88 rdf:rest N5781d29899164a1bba56a8209f897159
89 Nf980c5bb49004eeab823762baf403085 schema:name dimensions_id
90 schema:value pub.1111768428
91 rdf:type schema:PropertyValue
92 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
93 schema:name Chemical Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
96 schema:name Physical Chemistry (incl. Structural)
97 rdf:type schema:DefinedTerm
98 sg:journal.1290452 schema:issn 2397-7132
99 schema:name npj 2D Materials and Applications
100 rdf:type schema:Periodical
101 sg:pub.10.1038/natrevmats.2017.33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085993311
102 https://doi.org/10.1038/natrevmats.2017.33
103 rdf:type schema:CreativeWork
104 sg:pub.10.1038/ncomms14985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084750436
105 https://doi.org/10.1038/ncomms14985
106 rdf:type schema:CreativeWork
107 sg:pub.10.1038/ncomms15135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085128703
108 https://doi.org/10.1038/ncomms15135
109 rdf:type schema:CreativeWork
110 sg:pub.10.1038/nnano.2017.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085412973
111 https://doi.org/10.1038/nnano.2017.100
112 rdf:type schema:CreativeWork
113 sg:pub.10.1038/s41467-017-00516-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091790091
114 https://doi.org/10.1038/s41467-017-00516-5
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/s41467-017-01298-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092371148
117 https://doi.org/10.1038/s41467-017-01298-6
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/s41563-018-0055-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1103549260
120 https://doi.org/10.1038/s41563-018-0055-z
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/s41565-018-0063-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101086668
123 https://doi.org/10.1038/s41565-018-0063-9
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1002/adom.201701347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101718353
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.cpc.2014.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032808560
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.mattod.2016.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002345559
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.pcrysgrow.2016.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024565374
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1021/acs.nanolett.6b00986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055121444
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1021/acs.nanolett.7b02737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091688498
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1021/acsnano.5b03043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031956874
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1021/acsnano.5b07916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041233459
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1021/cm5025662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036802216
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1021/nn403454e schema:sameAs https://app.dimensions.ai/details/publication/pub.1012894732
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1039/c4cs00256c schema:sameAs https://app.dimensions.ai/details/publication/pub.1050456475
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1039/c5cs00507h schema:sameAs https://app.dimensions.ai/details/publication/pub.1016232877
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1039/c7ra01748k schema:sameAs https://app.dimensions.ai/details/publication/pub.1085117612
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1039/c8nr02246a schema:sameAs https://app.dimensions.ai/details/publication/pub.1106048869
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1063/1.4974072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049774683
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1088/0953-8984/21/39/395502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037182159
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1088/1361-648x/aa680e schema:sameAs https://app.dimensions.ai/details/publication/pub.1084172614
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1088/2053-1583/3/2/025029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059182880
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1088/2053-1583/aa6beb schema:sameAs https://app.dimensions.ai/details/publication/pub.1085299247
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1088/2053-1583/aaa1c5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099816194
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevlett.119.187402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092484475
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/58.20455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061190507
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1126/science.1208455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002839480
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1146/annurev.matsci.32.012102.110247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009752777
172 rdf:type schema:CreativeWork
173 https://www.grid.ac/institutes/grid.411963.8 schema:alternateName Hangzhou Dianzi University
174 schema:name School of Electronics and Information, Hangzhou Dianzi University, 310018, Hangzhou, China
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...