Selective control of molecule charge state on graphene using tip-induced electric field and nitrogen doping View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Van Dong Pham, Sukanya Ghosh, Frédéric Joucken, Mario Pelaez-Fernandez, Vincent Repain, Cyril Chacon, Amandine Bellec, Yann Girard, Robert Sporken, Sylvie Rousset, Yannick J. Dappe, Shobhana Narasimhan, Jérôme Lagoute

ABSTRACT

The combination of graphene with molecules offers promising opportunities to achieve new functionalities. In these hybrid structures, interfacial charge transfer plays a key role in the electronic properties and thus has to be understood and mastered. Using scanning tunneling microscopy and ab initio density functional theory calculations, we show that combining nitrogen doping of graphene with an electric field allows for a selective control of the charge state in a molecular layer on graphene. On pristine graphene, the local gating applied by the tip induces a shift of the molecular levels of adsorbed molecules and can be used to control their charge state. Ab initio calculations show that under the application of an electric field, the hybrid molecule/graphene system behaves like an electrostatic dipole with opposite charges in the molecule and graphene sub-units that are found to be proportional to the electric field amplitude, which thereby controls the charge transfer. When local gating is combined with nitrogen doping of graphene, the charging voltage of molecules on nitrogen is greatly lowered. Consequently, applying the proper electric field allows one to obtain a molecular layer with a mixed charge state, where a selective reduction is performed on single molecules at nitrogen sites. The local gating applied by a tip induces a shift of the energy levels of molecules adsorbed on graphene. A team led by Jerome Lagoute at Universite Paris Diderot investigated the interplay between the charge state of molecules on pristine and doped-graphene, and the tip-induced electric fields in scanning tunneling microscopy experiments. The tip-induced electric field was found to shift the molecular levels of tetracyanoquinodimethane molecules on graphene, leading to a change of charge state at negative bias. Ab initio calculations indicated that the molecule-on-graphene hybrid structure can be regarded as an electrostatic dipole, hence the charge transfer and associated electronic charge in the molecule and graphene could be tuned by the electric field. Furthermore, inserting nitrogen atom dopants allowed shifting the energy levels of single molecules absorbed directly on the electron-donating point defects. More... »

PAGES

5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41699-019-0087-5

DOI

http://dx.doi.org/10.1038/s41699-019-0087-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111662656


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Paul Drude Institute for Solid State Electronics", 
          "id": "https://www.grid.ac/institutes/grid.420187.8", 
          "name": [
            "Universit\u00e9 Paris Diderot, Sorbonne Paris Cit\u00e9, CNRS, Laboratoire Mat\u00e9riaux et Ph\u00e9nom\u00e8nes Quantiques, UMR 7162, 75013, Paris, France", 
            "Paul-Drude-Institut f\u00fcr Festk\u00f6rperelektronik, Hausvogteiplatz 5-7, 10117, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Dong Pham", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Centre for Theoretical Physics", 
          "id": "https://www.grid.ac/institutes/grid.419330.c", 
          "name": [
            "Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, 560064, Bangalore, India", 
            "Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, I-34151, Trieste, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghosh", 
        "givenName": "Sukanya", 
        "id": "sg:person.010104615122.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010104615122.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Namur", 
          "id": "https://www.grid.ac/institutes/grid.6520.1", 
          "name": [
            "Research Center in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), 61 Rue de Bruxelles, 5000, Namur, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Joucken", 
        "givenName": "Fr\u00e9d\u00e9ric", 
        "id": "sg:person.01333361160.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333361160.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Zaragoza", 
          "id": "https://www.grid.ac/institutes/grid.11205.37", 
          "name": [
            "Universit\u00e9 Paris Diderot, Sorbonne Paris Cit\u00e9, CNRS, Laboratoire Mat\u00e9riaux et Ph\u00e9nom\u00e8nes Quantiques, UMR 7162, 75013, Paris, France", 
            "Laboratorio de Microscopias Avanzadas (LMA), Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, Zaragoza, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pelaez-Fernandez", 
        "givenName": "Mario", 
        "id": "sg:person.012523152756.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012523152756.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Universit\u00e9 Paris Diderot, Sorbonne Paris Cit\u00e9, CNRS, Laboratoire Mat\u00e9riaux et Ph\u00e9nom\u00e8nes Quantiques, UMR 7162, 75013, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Repain", 
        "givenName": "Vincent", 
        "id": "sg:person.01360635701.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360635701.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Universit\u00e9 Paris Diderot, Sorbonne Paris Cit\u00e9, CNRS, Laboratoire Mat\u00e9riaux et Ph\u00e9nom\u00e8nes Quantiques, UMR 7162, 75013, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chacon", 
        "givenName": "Cyril", 
        "id": "sg:person.01060201507.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060201507.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Universit\u00e9 Paris Diderot, Sorbonne Paris Cit\u00e9, CNRS, Laboratoire Mat\u00e9riaux et Ph\u00e9nom\u00e8nes Quantiques, UMR 7162, 75013, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bellec", 
        "givenName": "Amandine", 
        "id": "sg:person.0724203460.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724203460.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Universit\u00e9 Paris Diderot, Sorbonne Paris Cit\u00e9, CNRS, Laboratoire Mat\u00e9riaux et Ph\u00e9nom\u00e8nes Quantiques, UMR 7162, 75013, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Girard", 
        "givenName": "Yann", 
        "id": "sg:person.0671347645.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671347645.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Namur", 
          "id": "https://www.grid.ac/institutes/grid.6520.1", 
          "name": [
            "Research Center in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), 61 Rue de Bruxelles, 5000, Namur, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sporken", 
        "givenName": "Robert", 
        "id": "sg:person.012346774365.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012346774365.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Universit\u00e9 Paris Diderot, Sorbonne Paris Cit\u00e9, CNRS, Laboratoire Mat\u00e9riaux et Ph\u00e9nom\u00e8nes Quantiques, UMR 7162, 75013, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rousset", 
        "givenName": "Sylvie", 
        "id": "sg:person.0737463045.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737463045.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Service de Physique de l'Etat Condens\u00e9", 
          "id": "https://www.grid.ac/institutes/grid.462531.7", 
          "name": [
            "SPEC, CEA, CNRS, Universit\u00e9 Paris-Saclay, CEA Saclay, 91191, Gif-sur-Yvette Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dappe", 
        "givenName": "Yannick J.", 
        "id": "sg:person.01254541302.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254541302.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jawaharlal Nehru Centre for Advanced Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.419636.f", 
          "name": [
            "Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, 560064, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Narasimhan", 
        "givenName": "Shobhana", 
        "id": "sg:person.0613354164.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613354164.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Universit\u00e9 Paris Diderot, Sorbonne Paris Cit\u00e9, CNRS, Laboratoire Mat\u00e9riaux et Ph\u00e9nom\u00e8nes Quantiques, UMR 7162, 75013, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lagoute", 
        "givenName": "J\u00e9r\u00f4me", 
        "id": "sg:person.01312522501.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312522501.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphys2379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000628005", 
          "https://doi.org/10.1038/nphys2379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nantod.2013.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002364348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matlet.2012.04.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003494125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn100315s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005903843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0cc02675a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008342247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0cc02675a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008342247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008618441", 
          "https://doi.org/10.1038/nphys1807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.235401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011421859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.235401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011421859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.3296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013611887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.3296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013611887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2015.08.177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014344134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.200801711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017521461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.200801711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017521461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.076801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017992077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.076801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017992077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4cs00141a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018918597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms13553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019968392", 
          "https://doi.org/10.1038/ncomms13553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.166801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020242862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.166801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020242862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.161408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023557441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.161408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023557441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijms.2008.07.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024772487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025977346", 
          "https://doi.org/10.1038/nphys2610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl304734g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031905870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchem.212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032189283", 
          "https://doi.org/10.1038/nchem.212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchem.212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032189283", 
          "https://doi.org/10.1038/nchem.212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cs200652y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034762797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/21/39/395502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037182159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/21/39/395502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037182159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.1978.tb39414.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040363379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep24796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042638100", 
          "https://doi.org/10.1038/srep24796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl2009058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043008967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl2009058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043008967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.036801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044600905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.036801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044600905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.20495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044734228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn501459v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047264887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm5005467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053916653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.5b00711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055120633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja071658g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055844819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja071658g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055844819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp200386z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056081650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp200386z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056081650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn503753e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056226234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.441499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058019527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.140.a1133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060431417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.140.a1133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060431417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.13.5188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.13.5188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.076103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.076103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.50.1998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.50.1998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.51.686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060789543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.51.686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060789543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jpcc.8b01408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101536197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-05163-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105584516", 
          "https://doi.org/10.1038/s41467-018-05163-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "The combination of graphene with molecules offers promising opportunities to achieve new functionalities. In these hybrid structures, interfacial charge transfer plays a key role in the electronic properties and thus has to be understood and mastered. Using scanning tunneling microscopy and ab initio density functional theory calculations, we show that combining nitrogen doping of graphene with an electric field allows for a selective control of the charge state in a molecular layer on graphene. On pristine graphene, the local gating applied by the tip induces a shift of the molecular levels of adsorbed molecules and can be used to control their charge state. Ab initio calculations show that under the application of an electric field, the hybrid molecule/graphene system behaves like an electrostatic dipole with opposite charges in the molecule and graphene sub-units that are found to be proportional to the electric field amplitude, which thereby controls the charge transfer. When local gating is combined with nitrogen doping of graphene, the charging voltage of molecules on nitrogen is greatly lowered. Consequently, applying the proper electric field allows one to obtain a molecular layer with a mixed charge state, where a selective reduction is performed on single molecules at nitrogen sites. The local gating applied by a tip induces a shift of the energy levels of molecules adsorbed on graphene. A team led by Jerome Lagoute at Universite Paris Diderot investigated the interplay between the charge state of molecules on pristine and doped-graphene, and the tip-induced electric fields in scanning tunneling microscopy experiments. The tip-induced electric field was found to shift the molecular levels of tetracyanoquinodimethane molecules on graphene, leading to a change of charge state at negative bias. Ab initio calculations indicated that the molecule-on-graphene hybrid structure can be regarded as an electrostatic dipole, hence the charge transfer and associated electronic charge in the molecule and graphene could be tuned by the electric field. Furthermore, inserting nitrogen atom dopants allowed shifting the energy levels of single molecules absorbed directly on the electron-donating point defects.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41699-019-0087-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1290452", 
        "issn": [
          "2397-7132"
        ], 
        "name": "npj 2D Materials and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Selective control of molecule charge state on graphene using tip-induced electric field and nitrogen doping", 
    "pagination": "5", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c93deab2113152a20a85cee295544fb50c5ff1762abfb0c0d290af9f399df736"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41699-019-0087-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111662656"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41699-019-0087-5", 
      "https://app.dimensions.ai/details/publication/pub.1111662656"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100783_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41699-019-0087-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41699-019-0087-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41699-019-0087-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41699-019-0087-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41699-019-0087-5'


 

This table displays all metadata directly associated to this object as RDF triples.

293 TRIPLES      21 PREDICATES      68 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41699-019-0087-5 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N34814d38e35d45fcb1b7b42ca8b925b6
4 schema:citation sg:pub.10.1038/nchem.212
5 sg:pub.10.1038/ncomms13553
6 sg:pub.10.1038/nphys1807
7 sg:pub.10.1038/nphys2379
8 sg:pub.10.1038/nphys2610
9 sg:pub.10.1038/s41467-018-05163-y
10 sg:pub.10.1038/srep24796
11 https://doi.org/10.1002/jcc.20495
12 https://doi.org/10.1002/smll.200801711
13 https://doi.org/10.1016/j.apsusc.2015.08.177
14 https://doi.org/10.1016/j.ijms.2008.07.013
15 https://doi.org/10.1016/j.matlet.2012.04.033
16 https://doi.org/10.1016/j.nantod.2013.07.003
17 https://doi.org/10.1021/acs.jpcc.8b01408
18 https://doi.org/10.1021/acs.nanolett.5b00711
19 https://doi.org/10.1021/cm5005467
20 https://doi.org/10.1021/cs200652y
21 https://doi.org/10.1021/ja071658g
22 https://doi.org/10.1021/jp200386z
23 https://doi.org/10.1021/nl2009058
24 https://doi.org/10.1021/nl304734g
25 https://doi.org/10.1021/nn100315s
26 https://doi.org/10.1021/nn501459v
27 https://doi.org/10.1021/nn503753e
28 https://doi.org/10.1039/c0cc02675a
29 https://doi.org/10.1039/c4cs00141a
30 https://doi.org/10.1063/1.441499
31 https://doi.org/10.1088/0953-8984/21/39/395502
32 https://doi.org/10.1103/physrev.140.a1133
33 https://doi.org/10.1103/physrevb.13.5188
34 https://doi.org/10.1103/physrevb.81.235401
35 https://doi.org/10.1103/physrevb.85.161408
36 https://doi.org/10.1103/physrevlett.101.076103
37 https://doi.org/10.1103/physrevlett.108.036801
38 https://doi.org/10.1103/physrevlett.50.1998
39 https://doi.org/10.1103/physrevlett.51.686
40 https://doi.org/10.1103/physrevlett.77.3865
41 https://doi.org/10.1103/physrevlett.82.3296
42 https://doi.org/10.1103/physrevlett.94.076801
43 https://doi.org/10.1103/physrevlett.96.166801
44 https://doi.org/10.1111/j.1749-6632.1978.tb39414.x
45 schema:datePublished 2019-12
46 schema:datePublishedReg 2019-12-01
47 schema:description The combination of graphene with molecules offers promising opportunities to achieve new functionalities. In these hybrid structures, interfacial charge transfer plays a key role in the electronic properties and thus has to be understood and mastered. Using scanning tunneling microscopy and ab initio density functional theory calculations, we show that combining nitrogen doping of graphene with an electric field allows for a selective control of the charge state in a molecular layer on graphene. On pristine graphene, the local gating applied by the tip induces a shift of the molecular levels of adsorbed molecules and can be used to control their charge state. Ab initio calculations show that under the application of an electric field, the hybrid molecule/graphene system behaves like an electrostatic dipole with opposite charges in the molecule and graphene sub-units that are found to be proportional to the electric field amplitude, which thereby controls the charge transfer. When local gating is combined with nitrogen doping of graphene, the charging voltage of molecules on nitrogen is greatly lowered. Consequently, applying the proper electric field allows one to obtain a molecular layer with a mixed charge state, where a selective reduction is performed on single molecules at nitrogen sites. The local gating applied by a tip induces a shift of the energy levels of molecules adsorbed on graphene. A team led by Jerome Lagoute at Universite Paris Diderot investigated the interplay between the charge state of molecules on pristine and doped-graphene, and the tip-induced electric fields in scanning tunneling microscopy experiments. The tip-induced electric field was found to shift the molecular levels of tetracyanoquinodimethane molecules on graphene, leading to a change of charge state at negative bias. Ab initio calculations indicated that the molecule-on-graphene hybrid structure can be regarded as an electrostatic dipole, hence the charge transfer and associated electronic charge in the molecule and graphene could be tuned by the electric field. Furthermore, inserting nitrogen atom dopants allowed shifting the energy levels of single molecules absorbed directly on the electron-donating point defects.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree false
51 schema:isPartOf N944983d1e8b34490b99ad4aef9672506
52 Nb5f1213dea234942b0ab1fde72534180
53 sg:journal.1290452
54 schema:name Selective control of molecule charge state on graphene using tip-induced electric field and nitrogen doping
55 schema:pagination 5
56 schema:productId N10722d6e1d984816a574d6ab410a0a9d
57 N43fa790eafe4431f97c0e7289ab86c43
58 Na4a7ef6335424a4f8eae2a00d0583b93
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111662656
60 https://doi.org/10.1038/s41699-019-0087-5
61 schema:sdDatePublished 2019-04-11T08:55
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Nd0337845f356448f988565549420c07b
64 schema:url https://www.nature.com/articles/s41699-019-0087-5
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N0f959631a6b6462f9bba40aeb2ad46a7 rdf:first sg:person.012346774365.18
69 rdf:rest N835b6c898a954d1d84627c065411c342
70 N10722d6e1d984816a574d6ab410a0a9d schema:name readcube_id
71 schema:value c93deab2113152a20a85cee295544fb50c5ff1762abfb0c0d290af9f399df736
72 rdf:type schema:PropertyValue
73 N1670042c49cb4b9789c0a837852fc898 rdf:first sg:person.01333361160.49
74 rdf:rest N60976458dd36461db083bd1ee684e5a7
75 N25e8575852a347158f280cf3920a8f7f rdf:first sg:person.0613354164.15
76 rdf:rest N6fba52c40898423ca6f86578369437d8
77 N34814d38e35d45fcb1b7b42ca8b925b6 rdf:first Nd6d5502fc2014f918f59d01f4d766f36
78 rdf:rest Ncef9065b5db14af8ac0830ae92d5ebc9
79 N43fa790eafe4431f97c0e7289ab86c43 schema:name doi
80 schema:value 10.1038/s41699-019-0087-5
81 rdf:type schema:PropertyValue
82 N60976458dd36461db083bd1ee684e5a7 rdf:first sg:person.012523152756.77
83 rdf:rest N87c2fc3a9d4445e1adaf13ad0bf7b4ea
84 N61129f265ff241e38689611e549d0a1c rdf:first sg:person.0724203460.08
85 rdf:rest N9aef9915f1d348cdae6395dd8f252039
86 N6fba52c40898423ca6f86578369437d8 rdf:first sg:person.01312522501.28
87 rdf:rest rdf:nil
88 N835b6c898a954d1d84627c065411c342 rdf:first sg:person.0737463045.27
89 rdf:rest Naca6badda555426fb0e7233bc6454bd9
90 N87c2fc3a9d4445e1adaf13ad0bf7b4ea rdf:first sg:person.01360635701.22
91 rdf:rest Ndfaa7c439cd742f7990cebc529186653
92 N944983d1e8b34490b99ad4aef9672506 schema:volumeNumber 3
93 rdf:type schema:PublicationVolume
94 N9aef9915f1d348cdae6395dd8f252039 rdf:first sg:person.0671347645.03
95 rdf:rest N0f959631a6b6462f9bba40aeb2ad46a7
96 Na4a7ef6335424a4f8eae2a00d0583b93 schema:name dimensions_id
97 schema:value pub.1111662656
98 rdf:type schema:PropertyValue
99 Naca6badda555426fb0e7233bc6454bd9 rdf:first sg:person.01254541302.88
100 rdf:rest N25e8575852a347158f280cf3920a8f7f
101 Nb5f1213dea234942b0ab1fde72534180 schema:issueNumber 1
102 rdf:type schema:PublicationIssue
103 Ncef9065b5db14af8ac0830ae92d5ebc9 rdf:first sg:person.010104615122.86
104 rdf:rest N1670042c49cb4b9789c0a837852fc898
105 Nd0337845f356448f988565549420c07b schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 Nd6d5502fc2014f918f59d01f4d766f36 schema:affiliation https://www.grid.ac/institutes/grid.420187.8
108 schema:familyName Van Dong Pham
109 rdf:type schema:Person
110 Ndfaa7c439cd742f7990cebc529186653 rdf:first sg:person.01060201507.75
111 rdf:rest N61129f265ff241e38689611e549d0a1c
112 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
113 schema:name Chemical Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
116 schema:name Physical Chemistry (incl. Structural)
117 rdf:type schema:DefinedTerm
118 sg:journal.1290452 schema:issn 2397-7132
119 schema:name npj 2D Materials and Applications
120 rdf:type schema:Periodical
121 sg:person.010104615122.86 schema:affiliation https://www.grid.ac/institutes/grid.419330.c
122 schema:familyName Ghosh
123 schema:givenName Sukanya
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010104615122.86
125 rdf:type schema:Person
126 sg:person.01060201507.75 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
127 schema:familyName Chacon
128 schema:givenName Cyril
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060201507.75
130 rdf:type schema:Person
131 sg:person.012346774365.18 schema:affiliation https://www.grid.ac/institutes/grid.6520.1
132 schema:familyName Sporken
133 schema:givenName Robert
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012346774365.18
135 rdf:type schema:Person
136 sg:person.012523152756.77 schema:affiliation https://www.grid.ac/institutes/grid.11205.37
137 schema:familyName Pelaez-Fernandez
138 schema:givenName Mario
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012523152756.77
140 rdf:type schema:Person
141 sg:person.01254541302.88 schema:affiliation https://www.grid.ac/institutes/grid.462531.7
142 schema:familyName Dappe
143 schema:givenName Yannick J.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254541302.88
145 rdf:type schema:Person
146 sg:person.01312522501.28 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
147 schema:familyName Lagoute
148 schema:givenName Jérôme
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312522501.28
150 rdf:type schema:Person
151 sg:person.01333361160.49 schema:affiliation https://www.grid.ac/institutes/grid.6520.1
152 schema:familyName Joucken
153 schema:givenName Frédéric
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333361160.49
155 rdf:type schema:Person
156 sg:person.01360635701.22 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
157 schema:familyName Repain
158 schema:givenName Vincent
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360635701.22
160 rdf:type schema:Person
161 sg:person.0613354164.15 schema:affiliation https://www.grid.ac/institutes/grid.419636.f
162 schema:familyName Narasimhan
163 schema:givenName Shobhana
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613354164.15
165 rdf:type schema:Person
166 sg:person.0671347645.03 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
167 schema:familyName Girard
168 schema:givenName Yann
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671347645.03
170 rdf:type schema:Person
171 sg:person.0724203460.08 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
172 schema:familyName Bellec
173 schema:givenName Amandine
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724203460.08
175 rdf:type schema:Person
176 sg:person.0737463045.27 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
177 schema:familyName Rousset
178 schema:givenName Sylvie
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737463045.27
180 rdf:type schema:Person
181 sg:pub.10.1038/nchem.212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032189283
182 https://doi.org/10.1038/nchem.212
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/ncomms13553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019968392
185 https://doi.org/10.1038/ncomms13553
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/nphys1807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008618441
188 https://doi.org/10.1038/nphys1807
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nphys2379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000628005
191 https://doi.org/10.1038/nphys2379
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/nphys2610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025977346
194 https://doi.org/10.1038/nphys2610
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/s41467-018-05163-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1105584516
197 https://doi.org/10.1038/s41467-018-05163-y
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/srep24796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042638100
200 https://doi.org/10.1038/srep24796
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1002/jcc.20495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044734228
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1002/smll.200801711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017521461
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.apsusc.2015.08.177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014344134
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.ijms.2008.07.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024772487
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.matlet.2012.04.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003494125
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.nantod.2013.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002364348
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1021/acs.jpcc.8b01408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101536197
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1021/acs.nanolett.5b00711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055120633
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1021/cm5005467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053916653
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1021/cs200652y schema:sameAs https://app.dimensions.ai/details/publication/pub.1034762797
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1021/ja071658g schema:sameAs https://app.dimensions.ai/details/publication/pub.1055844819
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1021/jp200386z schema:sameAs https://app.dimensions.ai/details/publication/pub.1056081650
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1021/nl2009058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043008967
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1021/nl304734g schema:sameAs https://app.dimensions.ai/details/publication/pub.1031905870
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1021/nn100315s schema:sameAs https://app.dimensions.ai/details/publication/pub.1005903843
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1021/nn501459v schema:sameAs https://app.dimensions.ai/details/publication/pub.1047264887
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1021/nn503753e schema:sameAs https://app.dimensions.ai/details/publication/pub.1056226234
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1039/c0cc02675a schema:sameAs https://app.dimensions.ai/details/publication/pub.1008342247
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1039/c4cs00141a schema:sameAs https://app.dimensions.ai/details/publication/pub.1018918597
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1063/1.441499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058019527
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1088/0953-8984/21/39/395502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037182159
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1103/physrev.140.a1133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060431417
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1103/physrevb.13.5188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060521190
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1103/physrevb.81.235401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011421859
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1103/physrevb.85.161408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023557441
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1103/physrevlett.101.076103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060753907
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1103/physrevlett.108.036801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044600905
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1103/physrevlett.50.1998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060788637
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1103/physrevlett.51.686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060789543
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1103/physrevlett.77.3865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814179
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1103/physrevlett.82.3296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013611887
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1103/physrevlett.94.076801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017992077
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1103/physrevlett.96.166801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020242862
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1111/j.1749-6632.1978.tb39414.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040363379
269 rdf:type schema:CreativeWork
270 https://www.grid.ac/institutes/grid.11205.37 schema:alternateName University of Zaragoza
271 schema:name Laboratorio de Microscopias Avanzadas (LMA), Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, Zaragoza, Spain
272 Université Paris Diderot, Sorbonne Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162, 75013, Paris, France
273 rdf:type schema:Organization
274 https://www.grid.ac/institutes/grid.419330.c schema:alternateName International Centre for Theoretical Physics
275 schema:name Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, I-34151, Trieste, Italy
276 Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, 560064, Bangalore, India
277 rdf:type schema:Organization
278 https://www.grid.ac/institutes/grid.419636.f schema:alternateName Jawaharlal Nehru Centre for Advanced Scientific Research
279 schema:name Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, 560064, Bangalore, India
280 rdf:type schema:Organization
281 https://www.grid.ac/institutes/grid.420187.8 schema:alternateName Paul Drude Institute for Solid State Electronics
282 schema:name Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117, Berlin, Germany
283 Université Paris Diderot, Sorbonne Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162, 75013, Paris, France
284 rdf:type schema:Organization
285 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
286 schema:name Université Paris Diderot, Sorbonne Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162, 75013, Paris, France
287 rdf:type schema:Organization
288 https://www.grid.ac/institutes/grid.462531.7 schema:alternateName Service de Physique de l'Etat Condensé
289 schema:name SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191, Gif-sur-Yvette Cedex, France
290 rdf:type schema:Organization
291 https://www.grid.ac/institutes/grid.6520.1 schema:alternateName University of Namur
292 schema:name Research Center in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), 61 Rue de Bruxelles, 5000, Namur, Belgium
293 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...