Electronic structure and exciton shifts in Sb-doped MoS2 monolayer View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Mianzeng Zhong, Chao Shen, Le Huang, Hui-Xiong Deng, Guozhen Shen, Houzhi Zheng, Zhongming Wei, Jingbo Li

ABSTRACT

The effective manipulation of excitons is important for the realization of exciton-based devices and circuits, and doping is considered a good strategy to achieve this. While studies have shown that 2D semiconductors are ideal for excitonic devices, preparation of homogenous substitutional foreign-atom-doped 2D crystals is still difficult. Here we report the preparation of homogenous monolayer Sb-doped MoS2 single crystals via a facile chemical vapor deposition method. A and B excitons are observed in the Sb-doped MoS2 monolayer by reflection magnetic circular dichroism spectrum measurements. More important, compared with monolayer MoS2, the peak positions of two excitons show obvious shifts. Meanwhile, the degeneration of A exciton is also observed in the monolayer Sb-doped MoS2 crystal using photoluminescence spectroscopy, which is ascribed to the impurity energy levels within the band-gap, confirmed by density function theory. Our study opens a door to developing the doping of 2D layered transition metal dichalcogenides with group-V dopants, which is helpful for the fundamental study of the physical and chemical properties of transition metal dichalcogenides. Excitons in two-dimensional transition metal dichalcogenides can be tuned by incorporation of group-V dopants. A team led by Zhongming Wei at the Institute of Semiconductors, Chinese Academy of Sciences and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences used chemical vapour deposition to synthesize Sb-doped MoS2 monolayers, and investigated the spectral position of the A and B excitons. Microscopy and spectroscopy results indicated that Sb doping is substitutional and homogeneous, and stably replaces Mo atoms in the MoS2 lattice, forming Mo0.91Sb0.09S2 crystals. A combination of reflection magnetic circular dichroism spectroscopy and photoluminescence spectroscopy revealed that the A and B excitons exhibit a clear shift if compared to pristine MoS2. Density functional theory calculations showed that Sb doping gives rise to formation of impurity-related energy level within the band-gap of stoichiometrically pure MoS2. More... »

PAGES

1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41699-018-0083-1

DOI

http://dx.doi.org/10.1038/s41699-018-0083-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110955661


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Central South University", 
          "id": "https://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100083, Beijing, China", 
            "Hunan Key Laboratory of Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, 410083, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhong", 
        "givenName": "Mianzeng", 
        "id": "sg:person.01300224234.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300224234.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shen", 
        "givenName": "Chao", 
        "id": "sg:person.012271164240.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012271164240.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Guangdong University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.411851.8", 
          "name": [
            "School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Le", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deng", 
        "givenName": "Hui-Xiong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shen", 
        "givenName": "Guozhen", 
        "id": "sg:person.01062065500.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062065500.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Houzhi", 
        "id": "sg:person.011303376157.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011303376157.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wei", 
        "givenName": "Zhongming", 
        "id": "sg:person.01017540343.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017540343.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jingbo", 
        "id": "sg:person.01047754225.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047754225.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1063/1.4891495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002544738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.susc.2005.10.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004573380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.136805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004648868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.136805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004648868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl4046922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004811640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja500069b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006545037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.5b04845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007309960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.075420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007671558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.075420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007671558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0927-0256(96)00008-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008708156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010196330", 
          "https://doi.org/10.1038/nature10677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201509933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014760267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201601833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015995670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jacs.5b01594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016121565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201104798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016282353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019985867", 
          "https://doi.org/10.1038/ncomms2351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201600970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022700906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027952436", 
          "https://doi.org/10.1038/nnano.2012.95"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028219354", 
          "https://doi.org/10.1038/nnano.2012.193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl903868w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031417418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl903868w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031417418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.5b02315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031522541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032891119", 
          "https://doi.org/10.1038/nature14417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2nr31833d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033041722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1250140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036074202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.96", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038550073", 
          "https://doi.org/10.1038/nnano.2012.96"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.201302893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041925289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl503251h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043385874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047704758", 
          "https://doi.org/10.1038/nnano.2010.279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jacs.5b10519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049300750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051148621", 
          "https://doi.org/10.1038/nmat4061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201601104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051304633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.196802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053264408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.196802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053264408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jpcc.6b04974", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055112075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jpclett.5b01137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055113866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.6b03348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055138009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.6b05674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055138242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp2000442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056081489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp2000442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056081489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn505048y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056226353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.17953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.17953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.11169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.11169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.100401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060641036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.100401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060641036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.045414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060648811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.045414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060648811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.026802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.026802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6nr09495c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083802562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.165417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084824059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.165417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084824059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7nr03574h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086088236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.5024766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103353720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-018-0357-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105810949", 
          "https://doi.org/10.1038/s41586-018-0357-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "The effective manipulation of excitons is important for the realization of exciton-based devices and circuits, and doping is considered a good strategy to achieve this. While studies have shown that 2D semiconductors are ideal for excitonic devices, preparation of homogenous substitutional foreign-atom-doped 2D crystals is still difficult. Here we report the preparation of homogenous monolayer Sb-doped MoS2 single crystals via a facile chemical vapor deposition method. A and B excitons are observed in the Sb-doped MoS2 monolayer by reflection magnetic circular dichroism spectrum measurements. More important, compared with monolayer MoS2, the peak positions of two excitons show obvious shifts. Meanwhile, the degeneration of A exciton is also observed in the monolayer Sb-doped MoS2 crystal using photoluminescence spectroscopy, which is ascribed to the impurity energy levels within the band-gap, confirmed by density function theory. Our study opens a door to developing the doping of 2D layered transition metal dichalcogenides with group-V dopants, which is helpful for the fundamental study of the physical and chemical properties of transition metal dichalcogenides. Excitons in two-dimensional transition metal dichalcogenides can be tuned by incorporation of group-V dopants. A team led by Zhongming Wei at the Institute of Semiconductors, Chinese Academy of Sciences and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences used chemical vapour deposition to synthesize Sb-doped MoS2 monolayers, and investigated the spectral position of the A and B excitons. Microscopy and spectroscopy results indicated that Sb doping is substitutional and homogeneous, and stably replaces Mo atoms in the MoS2 lattice, forming Mo0.91Sb0.09S2 crystals. A combination of reflection magnetic circular dichroism spectroscopy and photoluminescence spectroscopy revealed that the A and B excitons exhibit a clear shift if compared to pristine MoS2. Density functional theory calculations showed that Sb doping gives rise to formation of impurity-related energy level within the band-gap of stoichiometrically pure MoS2.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41699-018-0083-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1290452", 
        "issn": [
          "2397-7132"
        ], 
        "name": "npj 2D Materials and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Electronic structure and exciton shifts in Sb-doped MoS2 monolayer", 
    "pagination": "1", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a47659ce12335bed70f276a724fde8fa6765dff98cdb477893f957c1477dbef4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41699-018-0083-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110955661"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41699-018-0083-1", 
      "https://app.dimensions.ai/details/publication/pub.1110955661"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000311_0000000311/records_55486_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41699-018-0083-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41699-018-0083-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41699-018-0083-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41699-018-0083-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41699-018-0083-1'


 

This table displays all metadata directly associated to this object as RDF triples.

264 TRIPLES      21 PREDICATES      74 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41699-018-0083-1 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nb30ed2e974974b0781f3c5bbde5b823c
4 schema:citation sg:pub.10.1038/nature10677
5 sg:pub.10.1038/nature14417
6 sg:pub.10.1038/ncomms2351
7 sg:pub.10.1038/nmat4061
8 sg:pub.10.1038/nnano.2010.279
9 sg:pub.10.1038/nnano.2012.193
10 sg:pub.10.1038/nnano.2012.95
11 sg:pub.10.1038/nnano.2012.96
12 sg:pub.10.1038/s41586-018-0357-y
13 https://doi.org/10.1002/adma.201104798
14 https://doi.org/10.1002/adma.201600970
15 https://doi.org/10.1002/adma.201601104
16 https://doi.org/10.1002/adma.201601833
17 https://doi.org/10.1002/anie.201509933
18 https://doi.org/10.1002/smll.201302893
19 https://doi.org/10.1016/0927-0256(96)00008-0
20 https://doi.org/10.1016/j.susc.2005.10.034
21 https://doi.org/10.1021/acs.jpcc.6b04974
22 https://doi.org/10.1021/acs.jpclett.5b01137
23 https://doi.org/10.1021/acs.nanolett.5b02315
24 https://doi.org/10.1021/acs.nanolett.5b04845
25 https://doi.org/10.1021/acsnano.6b03348
26 https://doi.org/10.1021/acsnano.6b05674
27 https://doi.org/10.1021/ja500069b
28 https://doi.org/10.1021/jacs.5b01594
29 https://doi.org/10.1021/jacs.5b10519
30 https://doi.org/10.1021/jp2000442
31 https://doi.org/10.1021/nl4046922
32 https://doi.org/10.1021/nl503251h
33 https://doi.org/10.1021/nl903868w
34 https://doi.org/10.1021/nn505048y
35 https://doi.org/10.1039/c2nr31833d
36 https://doi.org/10.1039/c6nr09495c
37 https://doi.org/10.1039/c7nr03574h
38 https://doi.org/10.1063/1.4891495
39 https://doi.org/10.1063/1.5024766
40 https://doi.org/10.1103/physrevb.50.17953
41 https://doi.org/10.1103/physrevb.54.11169
42 https://doi.org/10.1103/physrevb.87.100401
43 https://doi.org/10.1103/physrevb.88.075420
44 https://doi.org/10.1103/physrevb.93.045414
45 https://doi.org/10.1103/physrevb.95.165417
46 https://doi.org/10.1103/physrevlett.105.136805
47 https://doi.org/10.1103/physrevlett.108.196802
48 https://doi.org/10.1103/physrevlett.77.3865
49 https://doi.org/10.1103/physrevlett.92.026802
50 https://doi.org/10.1126/science.1250140
51 schema:datePublished 2019-12
52 schema:datePublishedReg 2019-12-01
53 schema:description The effective manipulation of excitons is important for the realization of exciton-based devices and circuits, and doping is considered a good strategy to achieve this. While studies have shown that 2D semiconductors are ideal for excitonic devices, preparation of homogenous substitutional foreign-atom-doped 2D crystals is still difficult. Here we report the preparation of homogenous monolayer Sb-doped MoS2 single crystals via a facile chemical vapor deposition method. A and B excitons are observed in the Sb-doped MoS2 monolayer by reflection magnetic circular dichroism spectrum measurements. More important, compared with monolayer MoS2, the peak positions of two excitons show obvious shifts. Meanwhile, the degeneration of A exciton is also observed in the monolayer Sb-doped MoS2 crystal using photoluminescence spectroscopy, which is ascribed to the impurity energy levels within the band-gap, confirmed by density function theory. Our study opens a door to developing the doping of 2D layered transition metal dichalcogenides with group-V dopants, which is helpful for the fundamental study of the physical and chemical properties of transition metal dichalcogenides. Excitons in two-dimensional transition metal dichalcogenides can be tuned by incorporation of group-V dopants. A team led by Zhongming Wei at the Institute of Semiconductors, Chinese Academy of Sciences and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences used chemical vapour deposition to synthesize Sb-doped MoS2 monolayers, and investigated the spectral position of the A and B excitons. Microscopy and spectroscopy results indicated that Sb doping is substitutional and homogeneous, and stably replaces Mo atoms in the MoS2 lattice, forming Mo0.91Sb0.09S2 crystals. A combination of reflection magnetic circular dichroism spectroscopy and photoluminescence spectroscopy revealed that the A and B excitons exhibit a clear shift if compared to pristine MoS2. Density functional theory calculations showed that Sb doping gives rise to formation of impurity-related energy level within the band-gap of stoichiometrically pure MoS2.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree false
57 schema:isPartOf N54e26fd3e219479892c874708e29dac3
58 N62f66c993ba046ae8cd6d876d658b5c5
59 sg:journal.1290452
60 schema:name Electronic structure and exciton shifts in Sb-doped MoS2 monolayer
61 schema:pagination 1
62 schema:productId N211bb1859ce343a6b9d89c23a0dbe550
63 Na5309c3ec7064577a38ded44d856915b
64 Ne3fd54f66d3341d4a8488b09ffb662c3
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110955661
66 https://doi.org/10.1038/s41699-018-0083-1
67 schema:sdDatePublished 2019-04-11T08:35
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher Nc6734916e0184c9f850a4ac2c1daed8c
70 schema:url https://www.nature.com/articles/s41699-018-0083-1
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N211bb1859ce343a6b9d89c23a0dbe550 schema:name readcube_id
75 schema:value a47659ce12335bed70f276a724fde8fa6765dff98cdb477893f957c1477dbef4
76 rdf:type schema:PropertyValue
77 N302b97ddbb75487298de31c3d647c9ba rdf:first Nab9b5d025639478b87d9887886fe9f34
78 rdf:rest N61dcb8b3580c4c20be1df130e481ab22
79 N31e61d896bd6492198f1ccfe6b580f12 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
80 schema:familyName Deng
81 schema:givenName Hui-Xiong
82 rdf:type schema:Person
83 N54e26fd3e219479892c874708e29dac3 schema:issueNumber 1
84 rdf:type schema:PublicationIssue
85 N61dcb8b3580c4c20be1df130e481ab22 rdf:first N31e61d896bd6492198f1ccfe6b580f12
86 rdf:rest Nc462729cf0ad4364a8c5577a34c0ff6e
87 N62f66c993ba046ae8cd6d876d658b5c5 schema:volumeNumber 3
88 rdf:type schema:PublicationVolume
89 N6d10b39eb0ed4c0aa8db57eda76909b1 rdf:first sg:person.011303376157.48
90 rdf:rest N9605a43777ed4ed9be10e8abe4e41c67
91 N6eb1793b7d904d84a530c1df581f4006 rdf:first sg:person.01047754225.10
92 rdf:rest rdf:nil
93 N9605a43777ed4ed9be10e8abe4e41c67 rdf:first sg:person.01017540343.32
94 rdf:rest N6eb1793b7d904d84a530c1df581f4006
95 Na5309c3ec7064577a38ded44d856915b schema:name dimensions_id
96 schema:value pub.1110955661
97 rdf:type schema:PropertyValue
98 Nab9b5d025639478b87d9887886fe9f34 schema:affiliation https://www.grid.ac/institutes/grid.411851.8
99 schema:familyName Huang
100 schema:givenName Le
101 rdf:type schema:Person
102 Nb30ed2e974974b0781f3c5bbde5b823c rdf:first sg:person.01300224234.15
103 rdf:rest Ndd530fb5865a427fa9129763ff8f3eb8
104 Nc462729cf0ad4364a8c5577a34c0ff6e rdf:first sg:person.01062065500.10
105 rdf:rest N6d10b39eb0ed4c0aa8db57eda76909b1
106 Nc6734916e0184c9f850a4ac2c1daed8c schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 Ndd530fb5865a427fa9129763ff8f3eb8 rdf:first sg:person.012271164240.54
109 rdf:rest N302b97ddbb75487298de31c3d647c9ba
110 Ne3fd54f66d3341d4a8488b09ffb662c3 schema:name doi
111 schema:value 10.1038/s41699-018-0083-1
112 rdf:type schema:PropertyValue
113 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
114 schema:name Chemical Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
117 schema:name Physical Chemistry (incl. Structural)
118 rdf:type schema:DefinedTerm
119 sg:journal.1290452 schema:issn 2397-7132
120 schema:name npj 2D Materials and Applications
121 rdf:type schema:Periodical
122 sg:person.01017540343.32 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
123 schema:familyName Wei
124 schema:givenName Zhongming
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017540343.32
126 rdf:type schema:Person
127 sg:person.01047754225.10 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
128 schema:familyName Li
129 schema:givenName Jingbo
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047754225.10
131 rdf:type schema:Person
132 sg:person.01062065500.10 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
133 schema:familyName Shen
134 schema:givenName Guozhen
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062065500.10
136 rdf:type schema:Person
137 sg:person.011303376157.48 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
138 schema:familyName Zheng
139 schema:givenName Houzhi
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011303376157.48
141 rdf:type schema:Person
142 sg:person.012271164240.54 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
143 schema:familyName Shen
144 schema:givenName Chao
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012271164240.54
146 rdf:type schema:Person
147 sg:person.01300224234.15 schema:affiliation https://www.grid.ac/institutes/grid.216417.7
148 schema:familyName Zhong
149 schema:givenName Mianzeng
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300224234.15
151 rdf:type schema:Person
152 sg:pub.10.1038/nature10677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010196330
153 https://doi.org/10.1038/nature10677
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/nature14417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032891119
156 https://doi.org/10.1038/nature14417
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/ncomms2351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019985867
159 https://doi.org/10.1038/ncomms2351
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nmat4061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051148621
162 https://doi.org/10.1038/nmat4061
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nnano.2010.279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047704758
165 https://doi.org/10.1038/nnano.2010.279
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nnano.2012.193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028219354
168 https://doi.org/10.1038/nnano.2012.193
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nnano.2012.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027952436
171 https://doi.org/10.1038/nnano.2012.95
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nnano.2012.96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038550073
174 https://doi.org/10.1038/nnano.2012.96
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/s41586-018-0357-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1105810949
177 https://doi.org/10.1038/s41586-018-0357-y
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1002/adma.201104798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016282353
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1002/adma.201600970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022700906
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1002/adma.201601104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051304633
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1002/adma.201601833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015995670
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1002/anie.201509933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014760267
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1002/smll.201302893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041925289
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/0927-0256(96)00008-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008708156
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.susc.2005.10.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004573380
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1021/acs.jpcc.6b04974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055112075
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1021/acs.jpclett.5b01137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055113866
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1021/acs.nanolett.5b02315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031522541
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1021/acs.nanolett.5b04845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007309960
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1021/acsnano.6b03348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055138009
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1021/acsnano.6b05674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055138242
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1021/ja500069b schema:sameAs https://app.dimensions.ai/details/publication/pub.1006545037
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1021/jacs.5b01594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016121565
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1021/jacs.5b10519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049300750
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1021/jp2000442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056081489
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1021/nl4046922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004811640
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1021/nl503251h schema:sameAs https://app.dimensions.ai/details/publication/pub.1043385874
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1021/nl903868w schema:sameAs https://app.dimensions.ai/details/publication/pub.1031417418
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1021/nn505048y schema:sameAs https://app.dimensions.ai/details/publication/pub.1056226353
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1039/c2nr31833d schema:sameAs https://app.dimensions.ai/details/publication/pub.1033041722
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1039/c6nr09495c schema:sameAs https://app.dimensions.ai/details/publication/pub.1083802562
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1039/c7nr03574h schema:sameAs https://app.dimensions.ai/details/publication/pub.1086088236
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1063/1.4891495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002544738
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1063/1.5024766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103353720
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1103/physrevb.50.17953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060573414
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1103/physrevb.54.11169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060581262
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1103/physrevb.87.100401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060641036
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1103/physrevb.88.075420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007671558
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1103/physrevb.93.045414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060648811
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1103/physrevb.95.165417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084824059
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1103/physrevlett.105.136805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004648868
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1103/physrevlett.108.196802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053264408
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1103/physrevlett.77.3865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814179
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1103/physrevlett.92.026802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060827785
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1126/science.1250140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036074202
254 rdf:type schema:CreativeWork
255 https://www.grid.ac/institutes/grid.216417.7 schema:alternateName Central South University
256 schema:name Hunan Key Laboratory of Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, 410083, Changsha, China
257 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100083, Beijing, China
258 rdf:type schema:Organization
259 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
260 schema:name State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100083, Beijing, China
261 rdf:type schema:Organization
262 https://www.grid.ac/institutes/grid.411851.8 schema:alternateName Guangdong University of Technology
263 schema:name School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
264 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...