Nitrogen-doping induces tunable magnetism in ReS2 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Qin Zhang, Zemian Ren, Nian Wu, Wenjie Wang, Yingjie Gao, Qiqi Zhang, Jing Shi, Lin Zhuang, Xiangnan Sun, Lei Fu

ABSTRACT

Transition metal dichalcogenides (TMDs) are promising for spintronic devices owing to their spin-orbit coupling and loss of inversion symmetry. However, further development was obstructed by their intrinsic nonmagnetic property. Doping TMDs with non-metal light atoms has been predicted to be a good option to induce unexpected magnetic properties which remain rarely explored. Here, we utilize nitrogen doping to introduce magnetic domains into anisotropic ReS2, giving rise to a transition from nonmagnetic to tunable magnetic ordering. Both of the experimental and computational results confirmed that the N-doping in ReS2 prefers to take place at the edge site than in-plane site. With controlled doping concentration, it exhibits a unique ferromagnetic-antiferromagnetic (FM-AFM) coupling. Assisted by theoretical calculations, we demonstrated that FM-AFM coupling presents a strong link to doping contents and doping sites. Wherein, the FM ordering mostly comes from N atoms and the AFM ordering originate from Re atoms. At the N-doping content of 4.24%, the saturated magnetization of N-doped ReS2 reached the largest value of 2.1 emu g−1 at 2 K. Further altering the content to 6.64%, the saturated magnetization of N-doped ReS2 decreases, but exhibits a distinct exchange bias (EB) phenomenon of around 200 Oe. With controlled N-doping concentrations, the intrinsic spin in ReS2 could be well altered and resulted in distinct magnetism, presenting tremendous potential for spintronic devices in information storage. A transition from non-magnetic to magnetic ordering can be induced in ReS2 by means of non-metal doping. At team led by Lei Fu at Wuhan University performed a combined experimental and computational investigation aimed at shedding light to the interplay between N doping and the onset of magnetic ordering in anisotropic ReS2. N doping was found to preferentially occur at the edge sites rather than within the plane, and a controlled doping concentration gave rise to a ferromagnetic-antiferromagnetic coupling. Notably, increasing the N content to 4.24 % resulted in a large value of saturated magnetization up to 2.1 emu g−1 at 2 K, and while a further increase to 6.64% led to the suppression of saturated magnetization, it resulted in the onset of an exchange bias of 200 Oe. More... »

PAGES

22

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41699-018-0068-0

DOI

http://dx.doi.org/10.1038/s41699-018-0068-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105534092


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Qin", 
        "id": "sg:person.010251705745.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010251705745.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ren", 
        "givenName": "Zemian", 
        "id": "sg:person.011754734120.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011754734120.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Nian", 
        "id": "sg:person.01014710551.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014710551.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Wenjie", 
        "id": "sg:person.013056455545.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013056455545.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Yingjie", 
        "id": "sg:person.014145255520.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014145255520.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Qiqi", 
        "id": "sg:person.011013065523.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011013065523.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "School of Physics and Technology, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Jing", 
        "id": "sg:person.016522331313.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016522331313.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhuang", 
        "givenName": "Lin", 
        "id": "sg:person.016042741361.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016042741361.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Center for Nanoscience and Technology", 
          "id": "https://www.grid.ac/institutes/grid.419265.d", 
          "name": [
            "National Center for Nanoscience and Technology, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Xiangnan", 
        "id": "sg:person.0606633076.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606633076.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fu", 
        "givenName": "Lei", 
        "id": "sg:person.015451531346.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015451531346.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1039/c2jm15906f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000171037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja201269b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000933656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja201269b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000933656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201600939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003516088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5cp02593a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003517896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201505498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004053284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.153402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004102128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.153402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004102128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4cp02007c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005792397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.075420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007671558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.075420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007671558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms11050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009043486", 
          "https://doi.org/10.1038/ncomms11050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchar.2006.06.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015620175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep34186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025083240", 
          "https://doi.org/10.1038/srep34186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja805545x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030222319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja805545x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030222319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032962232", 
          "https://doi.org/10.1038/nphys2524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep03987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033860394", 
          "https://doi.org/10.1038/srep03987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4ta01898b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038230662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.96", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038550073", 
          "https://doi.org/10.1038/nnano.2012.96"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039863866", 
          "https://doi.org/10.1038/nmat1931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl503251h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043385874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.200460534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046652825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2cp22997h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051605682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201302685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052357193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jacs.6b06368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055875887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp3015782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056088329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4820470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058082150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4865902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058090320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4928460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058094960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.8003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060564350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.8003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060564350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.081402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060636561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.081402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060636561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.50.1153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.50.1153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.097203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060828893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.097203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060828893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.047206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.047206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jacs.6b12934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074217856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201606129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074249862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201704585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093151354"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Transition metal dichalcogenides (TMDs) are promising for spintronic devices owing to their spin-orbit coupling and loss of inversion symmetry. However, further development was obstructed by their intrinsic nonmagnetic property. Doping TMDs with non-metal light atoms has been predicted to be a good option to induce unexpected magnetic properties which remain rarely explored. Here, we utilize nitrogen doping to introduce magnetic domains into anisotropic ReS2, giving rise to a transition from nonmagnetic to tunable magnetic ordering. Both of the experimental and computational results confirmed that the N-doping in ReS2 prefers to take place at the edge site than in-plane site. With controlled doping concentration, it exhibits a unique ferromagnetic-antiferromagnetic (FM-AFM) coupling. Assisted by theoretical calculations, we demonstrated that FM-AFM coupling presents a strong link to doping contents and doping sites. Wherein, the FM ordering mostly comes from N atoms and the AFM ordering originate from Re atoms. At the N-doping content of 4.24%, the saturated magnetization of N-doped ReS2 reached the largest value of 2.1 emu g\u22121 at 2 K. Further altering the content to 6.64%, the saturated magnetization of N-doped ReS2 decreases, but exhibits a distinct exchange bias (EB) phenomenon of around 200 Oe. With controlled N-doping concentrations, the intrinsic spin in ReS2 could be well altered and resulted in distinct magnetism, presenting tremendous potential for spintronic devices in information storage. A transition from non-magnetic to magnetic ordering can be induced in ReS2 by means of non-metal doping. At team led by Lei Fu at Wuhan University performed a combined experimental and computational investigation aimed at shedding light to the interplay between N doping and the onset of magnetic ordering in anisotropic ReS2. N doping was found to preferentially occur at the edge sites rather than within the plane, and a controlled doping concentration gave rise to a ferromagnetic-antiferromagnetic coupling. Notably, increasing the N content to 4.24 % resulted in a large value of saturated magnetization up to 2.1 emu g\u22121 at 2 K, and while a further increase to 6.64% led to the suppression of saturated magnetization, it resulted in the onset of an exchange bias of 200 Oe.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41699-018-0068-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1290452", 
        "issn": [
          "2397-7132"
        ], 
        "name": "npj 2D Materials and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Nitrogen-doping induces tunable magnetism in ReS2", 
    "pagination": "22", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "47f888f957e637d0ed01081e8854add55cc74dd298fd880e2ed3894d59b95ec5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41699-018-0068-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105534092"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41699-018-0068-0", 
      "https://app.dimensions.ai/details/publication/pub.1105534092"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000502.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41699-018-0068-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41699-018-0068-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41699-018-0068-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41699-018-0068-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41699-018-0068-0'


 

This table displays all metadata directly associated to this object as RDF triples.

235 TRIPLES      21 PREDICATES      61 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41699-018-0068-0 schema:about anzsrc-for:03
2 anzsrc-for:0302
3 schema:author Ne6f717f58c20404fa1c432f1f0d53d2f
4 schema:citation sg:pub.10.1038/ncomms11050
5 sg:pub.10.1038/nmat1931
6 sg:pub.10.1038/nnano.2012.96
7 sg:pub.10.1038/nphys2524
8 sg:pub.10.1038/srep03987
9 sg:pub.10.1038/srep34186
10 https://doi.org/10.1002/adfm.201606129
11 https://doi.org/10.1002/adma.201302685
12 https://doi.org/10.1002/adma.201505498
13 https://doi.org/10.1002/adma.201600939
14 https://doi.org/10.1002/adma.201704585
15 https://doi.org/10.1002/anie.200460534
16 https://doi.org/10.1016/j.matchar.2006.06.025
17 https://doi.org/10.1021/ja201269b
18 https://doi.org/10.1021/ja805545x
19 https://doi.org/10.1021/jacs.6b06368
20 https://doi.org/10.1021/jacs.6b12934
21 https://doi.org/10.1021/jp3015782
22 https://doi.org/10.1021/nl503251h
23 https://doi.org/10.1039/c2cp22997h
24 https://doi.org/10.1039/c2jm15906f
25 https://doi.org/10.1039/c4cp02007c
26 https://doi.org/10.1039/c4ta01898b
27 https://doi.org/10.1039/c5cp02593a
28 https://doi.org/10.1063/1.4820470
29 https://doi.org/10.1063/1.4865902
30 https://doi.org/10.1063/1.4928460
31 https://doi.org/10.1103/physrevb.46.8003
32 https://doi.org/10.1103/physrevb.84.081402
33 https://doi.org/10.1103/physrevb.84.153402
34 https://doi.org/10.1103/physrevb.88.075420
35 https://doi.org/10.1103/physrevlett.50.1153
36 https://doi.org/10.1103/physrevlett.93.097203
37 https://doi.org/10.1103/physrevlett.96.047206
38 schema:datePublished 2018-12
39 schema:datePublishedReg 2018-12-01
40 schema:description Transition metal dichalcogenides (TMDs) are promising for spintronic devices owing to their spin-orbit coupling and loss of inversion symmetry. However, further development was obstructed by their intrinsic nonmagnetic property. Doping TMDs with non-metal light atoms has been predicted to be a good option to induce unexpected magnetic properties which remain rarely explored. Here, we utilize nitrogen doping to introduce magnetic domains into anisotropic ReS2, giving rise to a transition from nonmagnetic to tunable magnetic ordering. Both of the experimental and computational results confirmed that the N-doping in ReS2 prefers to take place at the edge site than in-plane site. With controlled doping concentration, it exhibits a unique ferromagnetic-antiferromagnetic (FM-AFM) coupling. Assisted by theoretical calculations, we demonstrated that FM-AFM coupling presents a strong link to doping contents and doping sites. Wherein, the FM ordering mostly comes from N atoms and the AFM ordering originate from Re atoms. At the N-doping content of 4.24%, the saturated magnetization of N-doped ReS2 reached the largest value of 2.1 emu g−1 at 2 K. Further altering the content to 6.64%, the saturated magnetization of N-doped ReS2 decreases, but exhibits a distinct exchange bias (EB) phenomenon of around 200 Oe. With controlled N-doping concentrations, the intrinsic spin in ReS2 could be well altered and resulted in distinct magnetism, presenting tremendous potential for spintronic devices in information storage. A transition from non-magnetic to magnetic ordering can be induced in ReS2 by means of non-metal doping. At team led by Lei Fu at Wuhan University performed a combined experimental and computational investigation aimed at shedding light to the interplay between N doping and the onset of magnetic ordering in anisotropic ReS2. N doping was found to preferentially occur at the edge sites rather than within the plane, and a controlled doping concentration gave rise to a ferromagnetic-antiferromagnetic coupling. Notably, increasing the N content to 4.24 % resulted in a large value of saturated magnetization up to 2.1 emu g−1 at 2 K, and while a further increase to 6.64% led to the suppression of saturated magnetization, it resulted in the onset of an exchange bias of 200 Oe.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf N73aca51633044e06bbf392e55430acca
45 N9c77c25ace5f4fafb97c180d0c1c0fb5
46 sg:journal.1290452
47 schema:name Nitrogen-doping induces tunable magnetism in ReS2
48 schema:pagination 22
49 schema:productId N0076f6ecd7214ccebbf0162d31c8b115
50 N9c7efb4eb36948d3bb274ae3d4bb9548
51 Ne5cf9e7f0e8744f8b322f6acb2ff43f1
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105534092
53 https://doi.org/10.1038/s41699-018-0068-0
54 schema:sdDatePublished 2019-04-10T17:29
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Nc773d6440f0e4a9ebb609fa16e28aa66
57 schema:url https://www.nature.com/articles/s41699-018-0068-0
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N0076f6ecd7214ccebbf0162d31c8b115 schema:name doi
62 schema:value 10.1038/s41699-018-0068-0
63 rdf:type schema:PropertyValue
64 N1d7c09208875412aa19312f013dbfbb4 rdf:first sg:person.016042741361.46
65 rdf:rest N3591f1fe2edf44098a9e62b9d5a38fce
66 N1faf8661ed1a470480b1f1106cdd15ce rdf:first sg:person.013056455545.44
67 rdf:rest N5006007ba4394636b76a6a08effaa07e
68 N3591f1fe2edf44098a9e62b9d5a38fce rdf:first sg:person.0606633076.15
69 rdf:rest Na5e130d338e74d959f88b052ae35db55
70 N5006007ba4394636b76a6a08effaa07e rdf:first sg:person.014145255520.34
71 rdf:rest N7784ebdb38684540b9a0252ce0ba5214
72 N73aca51633044e06bbf392e55430acca schema:volumeNumber 2
73 rdf:type schema:PublicationVolume
74 N7784ebdb38684540b9a0252ce0ba5214 rdf:first sg:person.011013065523.09
75 rdf:rest N834f403c0a53486f845d9aa52a013283
76 N834f403c0a53486f845d9aa52a013283 rdf:first sg:person.016522331313.40
77 rdf:rest N1d7c09208875412aa19312f013dbfbb4
78 N9c77c25ace5f4fafb97c180d0c1c0fb5 schema:issueNumber 1
79 rdf:type schema:PublicationIssue
80 N9c7efb4eb36948d3bb274ae3d4bb9548 schema:name readcube_id
81 schema:value 47f888f957e637d0ed01081e8854add55cc74dd298fd880e2ed3894d59b95ec5
82 rdf:type schema:PropertyValue
83 Na5e130d338e74d959f88b052ae35db55 rdf:first sg:person.015451531346.73
84 rdf:rest rdf:nil
85 Nbda73cbd743e479796288d26f0906a91 rdf:first sg:person.011754734120.19
86 rdf:rest Ncfa855b96860439f975769f178e02046
87 Nc773d6440f0e4a9ebb609fa16e28aa66 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 Ncfa855b96860439f975769f178e02046 rdf:first sg:person.01014710551.32
90 rdf:rest N1faf8661ed1a470480b1f1106cdd15ce
91 Ne5cf9e7f0e8744f8b322f6acb2ff43f1 schema:name dimensions_id
92 schema:value pub.1105534092
93 rdf:type schema:PropertyValue
94 Ne6f717f58c20404fa1c432f1f0d53d2f rdf:first sg:person.010251705745.43
95 rdf:rest Nbda73cbd743e479796288d26f0906a91
96 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
97 schema:name Chemical Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
100 schema:name Inorganic Chemistry
101 rdf:type schema:DefinedTerm
102 sg:journal.1290452 schema:issn 2397-7132
103 schema:name npj 2D Materials and Applications
104 rdf:type schema:Periodical
105 sg:person.01014710551.32 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
106 schema:familyName Wu
107 schema:givenName Nian
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014710551.32
109 rdf:type schema:Person
110 sg:person.010251705745.43 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
111 schema:familyName Zhang
112 schema:givenName Qin
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010251705745.43
114 rdf:type schema:Person
115 sg:person.011013065523.09 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
116 schema:familyName Zhang
117 schema:givenName Qiqi
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011013065523.09
119 rdf:type schema:Person
120 sg:person.011754734120.19 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
121 schema:familyName Ren
122 schema:givenName Zemian
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011754734120.19
124 rdf:type schema:Person
125 sg:person.013056455545.44 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
126 schema:familyName Wang
127 schema:givenName Wenjie
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013056455545.44
129 rdf:type schema:Person
130 sg:person.014145255520.34 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
131 schema:familyName Gao
132 schema:givenName Yingjie
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014145255520.34
134 rdf:type schema:Person
135 sg:person.015451531346.73 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
136 schema:familyName Fu
137 schema:givenName Lei
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015451531346.73
139 rdf:type schema:Person
140 sg:person.016042741361.46 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
141 schema:familyName Zhuang
142 schema:givenName Lin
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016042741361.46
144 rdf:type schema:Person
145 sg:person.016522331313.40 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
146 schema:familyName Shi
147 schema:givenName Jing
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016522331313.40
149 rdf:type schema:Person
150 sg:person.0606633076.15 schema:affiliation https://www.grid.ac/institutes/grid.419265.d
151 schema:familyName Sun
152 schema:givenName Xiangnan
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606633076.15
154 rdf:type schema:Person
155 sg:pub.10.1038/ncomms11050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009043486
156 https://doi.org/10.1038/ncomms11050
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nmat1931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039863866
159 https://doi.org/10.1038/nmat1931
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nnano.2012.96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038550073
162 https://doi.org/10.1038/nnano.2012.96
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nphys2524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032962232
165 https://doi.org/10.1038/nphys2524
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/srep03987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033860394
168 https://doi.org/10.1038/srep03987
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/srep34186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025083240
171 https://doi.org/10.1038/srep34186
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1002/adfm.201606129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074249862
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1002/adma.201302685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052357193
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1002/adma.201505498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004053284
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1002/adma.201600939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003516088
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1002/adma.201704585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093151354
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1002/anie.200460534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046652825
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.matchar.2006.06.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015620175
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1021/ja201269b schema:sameAs https://app.dimensions.ai/details/publication/pub.1000933656
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1021/ja805545x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030222319
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1021/jacs.6b06368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055875887
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1021/jacs.6b12934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074217856
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1021/jp3015782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056088329
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1021/nl503251h schema:sameAs https://app.dimensions.ai/details/publication/pub.1043385874
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1039/c2cp22997h schema:sameAs https://app.dimensions.ai/details/publication/pub.1051605682
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1039/c2jm15906f schema:sameAs https://app.dimensions.ai/details/publication/pub.1000171037
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1039/c4cp02007c schema:sameAs https://app.dimensions.ai/details/publication/pub.1005792397
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1039/c4ta01898b schema:sameAs https://app.dimensions.ai/details/publication/pub.1038230662
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1039/c5cp02593a schema:sameAs https://app.dimensions.ai/details/publication/pub.1003517896
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1063/1.4820470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058082150
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1063/1.4865902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058090320
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1063/1.4928460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058094960
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physrevb.46.8003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060564350
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physrevb.84.081402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060636561
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1103/physrevb.84.153402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004102128
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1103/physrevb.88.075420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007671558
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1103/physrevlett.50.1153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060788368
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1103/physrevlett.93.097203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060828893
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1103/physrevlett.96.047206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060831656
228 rdf:type schema:CreativeWork
229 https://www.grid.ac/institutes/grid.419265.d schema:alternateName National Center for Nanoscience and Technology
230 schema:name National Center for Nanoscience and Technology, 100190, Beijing, China
231 rdf:type schema:Organization
232 https://www.grid.ac/institutes/grid.49470.3e schema:alternateName Wuhan University
233 schema:name College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
234 School of Physics and Technology, Wuhan University, 430072, Wuhan, China
235 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...