Overcoming the quantum efficiency-lifetime tradeoff of photocathodes by coating with atomically thin two-dimensional nanomaterials View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Gaoxue Wang, Ping Yang, Nathan A. Moody, Enrique R. Batista

ABSTRACT

Photocathodes are key components of electron injectors for X-ray free electron laser and X-ray energy recovery linacs, which generate brilliant, ultrafast, and coherent X-rays for the exploration of matter with ultrahigh resolutions in both space and time. Whereas alkali-based semiconducting photocathodes display a higher quantum efficiency (QE) in the visible light spectrum than their metallic counterparts, their lifetimes are much shorter due to the high reactivity of alkali-based surfaces to the residual gases in the vacuum chamber. Overcoming the tradeoff between QE and lifetimes has been a great challenge in the accelerator community. Herein, based on ab initio density functional calculations, we propose an approach to overcome this tradeoff by coating with atomically thin two-dimensional (2D) nanomaterials. On one hand, the 2D coating layers can enhance the lifetimes of photocathodes by preventing the chemical reactions with the residual gases. On the other hand, the 2D coating layers can effectively engineer the work function of photocathodes, thus controlling their QE. A monolayer of insulating BN reduces the work function, whereas a monolayer of semi-metallic graphene or semiconducting molybdenum disulfide (MoS2) increases the work function. This phenomenon originates from the induced interfacial dipoles. The reduction of work function by BN implies that it is capable of maintaining the high QE of semiconducting photocathodes in addition to enhance their lifetimes. This study advances our understandings on the surface chemistry of coated photocathodes and opens new technological avenues to fabricate photocathodes with high QE and longer lifetimes. Coating alkali-based photocathodes with atomically thin hBN enhance their lifetime whilst improving their quantum efficiency. A team led by Enrique Batista at Los Alamos National Laboratory performed ab initio density functional theory calculations on photocathodes coated with a variety of 2D materials. While monolayers of semi-metallic graphene and semiconducting MoS2 were found to increase the photocathode work function, a monolayer of insulating hBN led to a work function reduction whilst offering protection of the highly reactive photocathode surface from irreversible chemical reactions. Such work function reduction, key to achieving high quantum efficiency, was ascribed to the formation of induced dipole moments at the interface between hBN and the Cs3Sb cathode surface, pointing out of Cs3Sb. hBN monolayers are thus promising coating materials for alkali-based semiconducting photocathodes. More... »

PAGES

17

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41699-018-0062-6

DOI

http://dx.doi.org/10.1038/s41699-018-0062-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104575403


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Los Alamos National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "Los Alamos National Laboratory, 87545, Los Alamos, NM, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Gaoxue", 
        "id": "sg:person.0715367360.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715367360.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Los Alamos National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "Los Alamos National Laboratory, 87545, Los Alamos, NM, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Ping", 
        "id": "sg:person.0664520153.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664520153.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Los Alamos National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "Los Alamos National Laboratory, 87545, Los Alamos, NM, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moody", 
        "givenName": "Nathan A.", 
        "id": "sg:person.015632224660.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015632224660.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Los Alamos National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "Los Alamos National Laboratory, 87545, Los Alamos, NM, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Batista", 
        "givenName": "Enrique R.", 
        "id": "sg:person.01352625074.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352625074.78"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0957-4484/25/14/145604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000569572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl401544y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001983917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-5963(83)90072-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002113518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2982585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003048201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.136805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004648868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.136805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004648868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep10426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007051580", 
          "https://doi.org/10.1038/srep10426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0927-0256(96)00008-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008708156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4967349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009068552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.195425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012502167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.195425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012502167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0065-2539(08)61370-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014106156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2013.07.151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014359962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/47/5/055110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015154666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4870530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018033121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn500059s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018113336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/wcms.1280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018399931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1102896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019008412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.085415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019554720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.085415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019554720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1156965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019630779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9002(97)00990-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020002477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025956058", 
          "https://doi.org/10.1038/nmat1134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025956058", 
          "https://doi.org/10.1038/nmat1134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028219354", 
          "https://doi.org/10.1038/nnano.2012.193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.026803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030541306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.026803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030541306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1130681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030731383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9002(98)00841-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032364395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9002(98)00841-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032364395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032891119", 
          "https://doi.org/10.1038/nature14417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3cy00207a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036407425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-4332(96)00106-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037335683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9002(96)00984-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037773597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-9002(92)91088-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038087533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-9002(92)91088-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038087533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl801827v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040491531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl801827v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040491531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2085170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041142582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2010.06.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044277271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.20495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044734228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.073103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045365319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.073103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045365319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl203249a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046545446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9002(97)00545-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046865621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047704758", 
          "https://doi.org/10.1038/nnano.2010.279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6cy02178f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050598385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2016.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051082155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2016.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051082155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2016.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051082155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.158575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051144241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9002(99)00358-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051761296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.phpro.2015.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051857368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.195414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051879666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.195414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051879666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052791836", 
          "https://doi.org/10.1038/nmat1849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp4076355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056096949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl9011497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl9011497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1564060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057720612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2967826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057888270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/5/053010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059134669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/5/053010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059134669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.112.114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060420881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.112.114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060420881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.12301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060590942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.12301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060590942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.1758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.1758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.041403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060608582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.041403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060608582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.266402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.266402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.12.000090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065089997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4974738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074197155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jpcc.6b12796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084123343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41699-017-0014-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085530575", 
          "https://doi.org/10.1038/s41699-017-0014-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Photocathodes are key components of electron injectors for X-ray free electron laser and X-ray energy recovery linacs, which generate brilliant, ultrafast, and coherent X-rays for the exploration of matter with ultrahigh resolutions in both space and time. Whereas alkali-based semiconducting photocathodes display a higher quantum efficiency (QE) in the visible light spectrum than their metallic counterparts, their lifetimes are much shorter due to the high reactivity of alkali-based surfaces to the residual gases in the vacuum chamber. Overcoming the tradeoff between QE and lifetimes has been a great challenge in the accelerator community. Herein, based on ab initio density functional calculations, we propose an approach to overcome this tradeoff by coating with atomically thin two-dimensional (2D) nanomaterials. On one hand, the 2D coating layers can enhance the lifetimes of photocathodes by preventing the chemical reactions with the residual gases. On the other hand, the 2D coating layers can effectively engineer the work function of photocathodes, thus controlling their QE. A monolayer of insulating BN reduces the work function, whereas a monolayer of semi-metallic graphene or semiconducting molybdenum disulfide (MoS2) increases the work function. This phenomenon originates from the induced interfacial dipoles. The reduction of work function by BN implies that it is capable of maintaining the high QE of semiconducting photocathodes in addition to enhance their lifetimes. This study advances our understandings on the surface chemistry of coated photocathodes and opens new technological avenues to fabricate photocathodes with high QE and longer lifetimes. Coating alkali-based photocathodes with atomically thin hBN enhance their lifetime whilst improving their quantum efficiency. A team led by Enrique Batista at Los Alamos National Laboratory performed ab initio density functional theory calculations on photocathodes coated with a variety of 2D materials. While monolayers of semi-metallic graphene and semiconducting MoS2 were found to increase the photocathode work function, a monolayer of insulating hBN led to a work function reduction whilst offering protection of the highly reactive photocathode surface from irreversible chemical reactions. Such work function reduction, key to achieving high quantum efficiency, was ascribed to the formation of induced dipole moments at the interface between hBN and the Cs3Sb cathode surface, pointing out of Cs3Sb. hBN monolayers are thus promising coating materials for alkali-based semiconducting photocathodes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41699-018-0062-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1290452", 
        "issn": [
          "2397-7132"
        ], 
        "name": "npj 2D Materials and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Overcoming the quantum efficiency-lifetime tradeoff of photocathodes by coating with atomically thin two-dimensional nanomaterials", 
    "pagination": "17", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d9d4974db7823305571dfb79ac4df326128280e790e24697a649d364819a0087"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41699-018-0062-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104575403"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41699-018-0062-6", 
      "https://app.dimensions.ai/details/publication/pub.1104575403"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41699-018-0062-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41699-018-0062-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41699-018-0062-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41699-018-0062-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41699-018-0062-6'


 

This table displays all metadata directly associated to this object as RDF triples.

265 TRIPLES      21 PREDICATES      86 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41699-018-0062-6 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N48f81aa52f0b43518bcce5a448952724
4 schema:citation sg:pub.10.1038/nature14417
5 sg:pub.10.1038/nmat1134
6 sg:pub.10.1038/nmat1849
7 sg:pub.10.1038/nnano.2010.279
8 sg:pub.10.1038/nnano.2012.193
9 sg:pub.10.1038/s41699-017-0014-6
10 sg:pub.10.1038/srep10426
11 https://doi.org/10.1002/jcc.20495
12 https://doi.org/10.1002/wcms.1280
13 https://doi.org/10.1016/0168-9002(92)91088-q
14 https://doi.org/10.1016/0169-4332(96)00106-7
15 https://doi.org/10.1016/0378-5963(83)90072-7
16 https://doi.org/10.1016/0927-0256(96)00008-0
17 https://doi.org/10.1016/j.apsusc.2013.07.151
18 https://doi.org/10.1016/j.apsusc.2016.09.008
19 https://doi.org/10.1016/j.nima.2010.06.100
20 https://doi.org/10.1016/j.phpro.2015.11.010
21 https://doi.org/10.1016/s0065-2539(08)61370-0
22 https://doi.org/10.1016/s0168-9002(96)00984-9
23 https://doi.org/10.1016/s0168-9002(97)00545-7
24 https://doi.org/10.1016/s0168-9002(97)00990-x
25 https://doi.org/10.1016/s0168-9002(98)00841-9
26 https://doi.org/10.1016/s0168-9002(99)00358-7
27 https://doi.org/10.1021/acs.jpcc.6b12796
28 https://doi.org/10.1021/jp4076355
29 https://doi.org/10.1021/nl203249a
30 https://doi.org/10.1021/nl401544y
31 https://doi.org/10.1021/nl801827v
32 https://doi.org/10.1021/nl9011497
33 https://doi.org/10.1021/nn500059s
34 https://doi.org/10.1039/c3cy00207a
35 https://doi.org/10.1039/c6cy02178f
36 https://doi.org/10.1063/1.1564060
37 https://doi.org/10.1063/1.2085170
38 https://doi.org/10.1063/1.2967826
39 https://doi.org/10.1063/1.2982585
40 https://doi.org/10.1063/1.4870530
41 https://doi.org/10.1063/1.4967349
42 https://doi.org/10.1063/1.4974738
43 https://doi.org/10.1088/0022-3727/47/5/055110
44 https://doi.org/10.1088/0957-4484/25/14/145604
45 https://doi.org/10.1088/1367-2630/11/5/053010
46 https://doi.org/10.1103/physrev.112.114
47 https://doi.org/10.1103/physrevb.59.12301
48 https://doi.org/10.1103/physrevb.59.1758
49 https://doi.org/10.1103/physrevb.69.041403
50 https://doi.org/10.1103/physrevb.76.073103
51 https://doi.org/10.1103/physrevb.79.195425
52 https://doi.org/10.1103/physrevb.84.195414
53 https://doi.org/10.1103/physrevb.90.085415
54 https://doi.org/10.1103/physrevlett.101.026803
55 https://doi.org/10.1103/physrevlett.105.136805
56 https://doi.org/10.1103/physrevlett.77.3865
57 https://doi.org/10.1103/physrevlett.89.266402
58 https://doi.org/10.1117/12.158575
59 https://doi.org/10.1126/science.1102896
60 https://doi.org/10.1126/science.1130681
61 https://doi.org/10.1126/science.1156965
62 https://doi.org/10.1364/ao.12.000090
63 schema:datePublished 2018-12
64 schema:datePublishedReg 2018-12-01
65 schema:description Photocathodes are key components of electron injectors for X-ray free electron laser and X-ray energy recovery linacs, which generate brilliant, ultrafast, and coherent X-rays for the exploration of matter with ultrahigh resolutions in both space and time. Whereas alkali-based semiconducting photocathodes display a higher quantum efficiency (QE) in the visible light spectrum than their metallic counterparts, their lifetimes are much shorter due to the high reactivity of alkali-based surfaces to the residual gases in the vacuum chamber. Overcoming the tradeoff between QE and lifetimes has been a great challenge in the accelerator community. Herein, based on ab initio density functional calculations, we propose an approach to overcome this tradeoff by coating with atomically thin two-dimensional (2D) nanomaterials. On one hand, the 2D coating layers can enhance the lifetimes of photocathodes by preventing the chemical reactions with the residual gases. On the other hand, the 2D coating layers can effectively engineer the work function of photocathodes, thus controlling their QE. A monolayer of insulating BN reduces the work function, whereas a monolayer of semi-metallic graphene or semiconducting molybdenum disulfide (MoS2) increases the work function. This phenomenon originates from the induced interfacial dipoles. The reduction of work function by BN implies that it is capable of maintaining the high QE of semiconducting photocathodes in addition to enhance their lifetimes. This study advances our understandings on the surface chemistry of coated photocathodes and opens new technological avenues to fabricate photocathodes with high QE and longer lifetimes. Coating alkali-based photocathodes with atomically thin hBN enhance their lifetime whilst improving their quantum efficiency. A team led by Enrique Batista at Los Alamos National Laboratory performed ab initio density functional theory calculations on photocathodes coated with a variety of 2D materials. While monolayers of semi-metallic graphene and semiconducting MoS2 were found to increase the photocathode work function, a monolayer of insulating hBN led to a work function reduction whilst offering protection of the highly reactive photocathode surface from irreversible chemical reactions. Such work function reduction, key to achieving high quantum efficiency, was ascribed to the formation of induced dipole moments at the interface between hBN and the Cs3Sb cathode surface, pointing out of Cs3Sb. hBN monolayers are thus promising coating materials for alkali-based semiconducting photocathodes.
66 schema:genre research_article
67 schema:inLanguage en
68 schema:isAccessibleForFree true
69 schema:isPartOf N9707c74d1e2e4cc888986b095422ba82
70 N9b61b09de53049328b2256471824c9fa
71 sg:journal.1290452
72 schema:name Overcoming the quantum efficiency-lifetime tradeoff of photocathodes by coating with atomically thin two-dimensional nanomaterials
73 schema:pagination 17
74 schema:productId N2b49b687f7ca4acfbcb62eb8b06058c2
75 N99b64c1985c747ebb8a6634ed271dac0
76 Na6215f65b9454ee381b48da902edba80
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104575403
78 https://doi.org/10.1038/s41699-018-0062-6
79 schema:sdDatePublished 2019-04-10T20:43
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher Necd04c829dc24adfae591b81d683b065
82 schema:url https://www.nature.com/articles/s41699-018-0062-6
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N0a8f9a1ab6824793ab87cb951955b9a4 rdf:first sg:person.01352625074.78
87 rdf:rest rdf:nil
88 N2b49b687f7ca4acfbcb62eb8b06058c2 schema:name readcube_id
89 schema:value d9d4974db7823305571dfb79ac4df326128280e790e24697a649d364819a0087
90 rdf:type schema:PropertyValue
91 N48f81aa52f0b43518bcce5a448952724 rdf:first sg:person.0715367360.08
92 rdf:rest N657213853c204cee807f9af09ff75660
93 N657213853c204cee807f9af09ff75660 rdf:first sg:person.0664520153.42
94 rdf:rest N9ca88a5afde5400ca24c42d5b7976fce
95 N9707c74d1e2e4cc888986b095422ba82 schema:issueNumber 1
96 rdf:type schema:PublicationIssue
97 N99b64c1985c747ebb8a6634ed271dac0 schema:name dimensions_id
98 schema:value pub.1104575403
99 rdf:type schema:PropertyValue
100 N9b61b09de53049328b2256471824c9fa schema:volumeNumber 2
101 rdf:type schema:PublicationVolume
102 N9ca88a5afde5400ca24c42d5b7976fce rdf:first sg:person.015632224660.39
103 rdf:rest N0a8f9a1ab6824793ab87cb951955b9a4
104 Na6215f65b9454ee381b48da902edba80 schema:name doi
105 schema:value 10.1038/s41699-018-0062-6
106 rdf:type schema:PropertyValue
107 Necd04c829dc24adfae591b81d683b065 schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
110 schema:name Chemical Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
113 schema:name Physical Chemistry (incl. Structural)
114 rdf:type schema:DefinedTerm
115 sg:journal.1290452 schema:issn 2397-7132
116 schema:name npj 2D Materials and Applications
117 rdf:type schema:Periodical
118 sg:person.01352625074.78 schema:affiliation https://www.grid.ac/institutes/grid.148313.c
119 schema:familyName Batista
120 schema:givenName Enrique R.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352625074.78
122 rdf:type schema:Person
123 sg:person.015632224660.39 schema:affiliation https://www.grid.ac/institutes/grid.148313.c
124 schema:familyName Moody
125 schema:givenName Nathan A.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015632224660.39
127 rdf:type schema:Person
128 sg:person.0664520153.42 schema:affiliation https://www.grid.ac/institutes/grid.148313.c
129 schema:familyName Yang
130 schema:givenName Ping
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664520153.42
132 rdf:type schema:Person
133 sg:person.0715367360.08 schema:affiliation https://www.grid.ac/institutes/grid.148313.c
134 schema:familyName Wang
135 schema:givenName Gaoxue
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715367360.08
137 rdf:type schema:Person
138 sg:pub.10.1038/nature14417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032891119
139 https://doi.org/10.1038/nature14417
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nmat1134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025956058
142 https://doi.org/10.1038/nmat1134
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/nmat1849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791836
145 https://doi.org/10.1038/nmat1849
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nnano.2010.279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047704758
148 https://doi.org/10.1038/nnano.2010.279
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nnano.2012.193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028219354
151 https://doi.org/10.1038/nnano.2012.193
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/s41699-017-0014-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085530575
154 https://doi.org/10.1038/s41699-017-0014-6
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/srep10426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007051580
157 https://doi.org/10.1038/srep10426
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1002/jcc.20495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044734228
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1002/wcms.1280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018399931
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/0168-9002(92)91088-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1038087533
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/0169-4332(96)00106-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037335683
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/0378-5963(83)90072-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002113518
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/0927-0256(96)00008-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008708156
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.apsusc.2013.07.151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014359962
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.apsusc.2016.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051082155
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.nima.2010.06.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044277271
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.phpro.2015.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051857368
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/s0065-2539(08)61370-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014106156
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/s0168-9002(96)00984-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037773597
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s0168-9002(97)00545-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046865621
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/s0168-9002(97)00990-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020002477
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s0168-9002(98)00841-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032364395
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/s0168-9002(99)00358-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051761296
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1021/acs.jpcc.6b12796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084123343
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1021/jp4076355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056096949
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1021/nl203249a schema:sameAs https://app.dimensions.ai/details/publication/pub.1046545446
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1021/nl401544y schema:sameAs https://app.dimensions.ai/details/publication/pub.1001983917
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1021/nl801827v schema:sameAs https://app.dimensions.ai/details/publication/pub.1040491531
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1021/nl9011497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056221935
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1021/nn500059s schema:sameAs https://app.dimensions.ai/details/publication/pub.1018113336
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1039/c3cy00207a schema:sameAs https://app.dimensions.ai/details/publication/pub.1036407425
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1039/c6cy02178f schema:sameAs https://app.dimensions.ai/details/publication/pub.1050598385
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1063/1.1564060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057720612
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1063/1.2085170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041142582
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1063/1.2967826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057888270
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1063/1.2982585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003048201
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1063/1.4870530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018033121
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1063/1.4967349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009068552
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1063/1.4974738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074197155
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1088/0022-3727/47/5/055110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015154666
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1088/0957-4484/25/14/145604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000569572
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1088/1367-2630/11/5/053010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059134669
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1103/physrev.112.114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060420881
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1103/physrevb.59.12301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060590942
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1103/physrevb.59.1758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060591374
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1103/physrevb.69.041403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060608582
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1103/physrevb.76.073103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045365319
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1103/physrevb.79.195425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012502167
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1103/physrevb.84.195414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051879666
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1103/physrevb.90.085415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019554720
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1103/physrevlett.101.026803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030541306
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1103/physrevlett.105.136805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004648868
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1103/physrevlett.77.3865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814179
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1103/physrevlett.89.266402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060825795
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1117/12.158575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051144241
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1126/science.1102896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008412
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1126/science.1130681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030731383
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1126/science.1156965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019630779
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1364/ao.12.000090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065089997
262 rdf:type schema:CreativeWork
263 https://www.grid.ac/institutes/grid.148313.c schema:alternateName Los Alamos National Laboratory
264 schema:name Los Alamos National Laboratory, 87545, Los Alamos, NM, USA
265 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...