Anisotropic band splitting in monolayer NbSe2: implications for superconductivity and charge density wave View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Yuki Nakata, Katsuaki Sugawara, Satoru Ichinokura, Yoshinori Okada, Taro Hitosugi, Takashi Koretsune, Keiji Ueno, Shuji Hasegawa, Takashi Takahashi, Takafumi Sato

ABSTRACT

Realization of unconventional physical properties in two-dimensional (2D) transition-metal dichalcogenides (TMDs) is currently one of the key challenges in condensed-matter systems. However, the electronic properties of 2D TMDs remain largely unexplored compared to those of their bulk counterparts. Here, we report the fabrication of a high-quality monolayer NbSe2 film with a trigonal prismatic structure by molecular beam epitaxy, and the study of its electronic properties by scanning tunneling microscopy, angle-resolved photoemission spectroscopy, and electrical transport measurements, together with first-principles band-structure calculations. In addition to a charge density wave (CDW) with 3 × 3 periodicity and superconductivity below 1.5 K, we observed sizable (~0.1 eV) band splitting along the Γ-K cut in the Brillouin zone due to inversion symmetry breaking in the monolayer crystal. This splitting is highly anisotropic in k space, leading to a spin-split van-Hove singularity in the band structure. The present results suggest the importance of spin–orbit coupling and symmetry breaking for unconventional superconductivity and CDW properties in monolayer TMDs. The interplay between symmetry breaking, superconductivity and charge density wave in monolayer NbSe2 is unveiled by spectroscopic techniques. A team led by Takafumi Sato at Tohoku University used molecular beam epitaxy to fabricate atomically thin NbSe2 films on bilayer graphene, and investigated their electronic properties by a combination of electrical transport measurements, scanning tunneling microscopy, and angle-resolved photoemission spectroscopy. A charge density wave transition with a strong periodic charge modulation was detected below 1.5 K, accompanied by the emergence of superconductivity. Owing to the inversion symmetry breaking occurring in monolayer NbSe2, a band splitting developed along the Γ-Κ direction of the Brillouin zone. Such band splitting was found to be related to the robustness of the observed superconductivity, as well as the formation of the charge density wave. More... »

PAGES

12

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41699-018-0057-3

DOI

http://dx.doi.org/10.1038/s41699-018-0057-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103702888


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Department of Physics, Tohoku University, 980-8578, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakata", 
        "givenName": "Yuki", 
        "id": "sg:person.01017113575.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017113575.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "WPI-Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
            "Center for Spintronics Research Network, Tohoku University, 980-8577, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sugawara", 
        "givenName": "Katsuaki", 
        "id": "sg:person.01353636572.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353636572.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Physics, University of Tokyo, 113-0033, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ichinokura", 
        "givenName": "Satoru", 
        "id": "sg:person.0615170252.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615170252.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "WPI-Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okada", 
        "givenName": "Yoshinori", 
        "id": "sg:person.0653226316.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653226316.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.32197.3e", 
          "name": [
            "WPI-Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
            "Department of Applied Chemistry, Tokyo institute of Technology, 152-8550, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hitosugi", 
        "givenName": "Taro", 
        "id": "sg:person.01135114004.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135114004.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RIKEN Center for Emergent Matter Science", 
          "id": "https://www.grid.ac/institutes/grid.474689.0", 
          "name": [
            "Department of Physics, Tohoku University, 980-8578, Sendai, Japan", 
            "RIKEN Center for Emergent Matter Science, 351-0198, Wako, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koretsune", 
        "givenName": "Takashi", 
        "id": "sg:person.07650541471.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07650541471.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saitama University", 
          "id": "https://www.grid.ac/institutes/grid.263023.6", 
          "name": [
            "Department of Chemistry, Saitama University, 338-8570, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ueno", 
        "givenName": "Keiji", 
        "id": "sg:person.016362132540.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016362132540.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Physics, University of Tokyo, 113-0033, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hasegawa", 
        "givenName": "Shuji", 
        "id": "sg:person.015452564551.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015452564551.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Department of Physics, Tohoku University, 980-8578, Sendai, Japan", 
            "WPI-Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
            "Center for Spintronics Research Network, Tohoku University, 980-8577, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takahashi", 
        "givenName": "Takashi", 
        "id": "sg:person.012324742574.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012324742574.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Department of Physics, Tohoku University, 980-8578, Sendai, Japan", 
            "Center for Spintronics Research Network, Tohoku University, 980-8577, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sato", 
        "givenName": "Takafumi", 
        "id": "sg:person.012724005105.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012724005105.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.84.153402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004102128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.153402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004102128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/6/24/010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005685463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006940404", 
          "https://doi.org/10.1038/nphys3527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.107403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009747867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.107403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009747867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.245436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011676895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.245436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011676895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2015.143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014123450", 
          "https://doi.org/10.1038/nnano.2015.143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-24624-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015825270", 
          "https://doi.org/10.1007/978-3-642-24624-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-24624-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015825270", 
          "https://doi.org/10.1007/978-3-642-24624-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl2035018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016422367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-9317(84)90057-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017379974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-9317(84)90057-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017379974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018737500101391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020691468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssb.201600235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020747675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1380/ejssnt.2012.400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020967496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2013.277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022386904", 
          "https://doi.org/10.1038/nnano.2013.277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.037004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027238372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.037004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027238372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027952436", 
          "https://doi.org/10.1038/nnano.2012.95"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00656561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029282988", 
          "https://doi.org/10.1007/bf00656561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00656561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029282988", 
          "https://doi.org/10.1007/bf00656561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.186804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030396482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.186804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030396482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.205302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030578033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.205302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030578033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1211387110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033284250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.165135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035170567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.165135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035170567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.5b06727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035883420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1250140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036074202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/21/39/395502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037182159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/21/39/395502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037182159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.96", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038550073", 
          "https://doi.org/10.1038/nnano.2012.96"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038992085", 
          "https://doi.org/10.1038/nphys699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1065068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039352292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms11711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039931872", 
          "https://doi.org/10.1038/ncomms11711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys0010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041281578", 
          "https://doi.org/10.1038/nphys0010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys0010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041281578", 
          "https://doi.org/10.1038/nphys0010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041998588", 
          "https://doi.org/10.1038/nphys3538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.086401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042098123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.086401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042098123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aab2277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042751729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.166402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043660958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.166402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043660958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.5b07848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044774428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/am.2016.157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049267994", 
          "https://doi.org/10.1038/am.2016.157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049548334", 
          "https://doi.org/10.1038/ncomms1882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049602911", 
          "https://doi.org/10.1038/nphys3580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchem.1589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050119463", 
          "https://doi.org/10.1038/nchem.1589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4928658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058095116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/16/11/115003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059136381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.2741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060545253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.2741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060545253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.41.7892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060554329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.41.7892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060554329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.224532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060639138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.224532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060639138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.235115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060643454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.235115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060643454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.126801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060762089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.126801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060762089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.35.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060779458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.35.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060779458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Realization of unconventional physical properties in two-dimensional (2D) transition-metal dichalcogenides (TMDs) is currently one of the key challenges in condensed-matter systems. However, the electronic properties of 2D TMDs remain largely unexplored compared to those of their bulk counterparts. Here, we report the fabrication of a high-quality monolayer NbSe2 film with a trigonal prismatic structure by molecular beam epitaxy, and the study of its electronic properties by scanning tunneling microscopy, angle-resolved photoemission spectroscopy, and electrical transport measurements, together with first-principles band-structure calculations. In addition to a charge density wave (CDW) with 3 \u00d7 3 periodicity and superconductivity below 1.5 K, we observed sizable (~0.1 eV) band splitting along the \u0393-K cut in the Brillouin zone due to inversion symmetry breaking in the monolayer crystal. This splitting is highly anisotropic in k space, leading to a spin-split van-Hove singularity in the band structure. The present results suggest the importance of spin\u2013orbit coupling and symmetry breaking for unconventional superconductivity and CDW properties in monolayer TMDs. The interplay between symmetry breaking, superconductivity and charge density wave in monolayer NbSe2 is unveiled by spectroscopic techniques. A team led by Takafumi Sato at Tohoku University used molecular beam epitaxy to fabricate atomically thin NbSe2 films on bilayer graphene, and investigated their electronic properties by a combination of electrical transport measurements, scanning tunneling microscopy, and angle-resolved photoemission spectroscopy. A charge density wave transition with a strong periodic charge modulation was detected below 1.5 K, accompanied by the emergence of superconductivity. Owing to the inversion symmetry breaking occurring in monolayer NbSe2, a band splitting developed along the \u0393-\u039a direction of the Brillouin zone. Such band splitting was found to be related to the robustness of the observed superconductivity, as well as the formation of the charge density wave.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41699-018-0057-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5865418", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5855401", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5904448", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1290452", 
        "issn": [
          "2397-7132"
        ], 
        "name": "npj 2D Materials and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Anisotropic band splitting in monolayer NbSe2: implications for superconductivity and charge density wave", 
    "pagination": "12", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "08805ec19db2cc57c12509a2335d7f39ba3ab2968fc354468406c096bb947706"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41699-018-0057-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103702888"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41699-018-0057-3", 
      "https://app.dimensions.ai/details/publication/pub.1103702888"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41699-018-0057-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41699-018-0057-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41699-018-0057-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41699-018-0057-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41699-018-0057-3'


 

This table displays all metadata directly associated to this object as RDF triples.

298 TRIPLES      21 PREDICATES      73 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41699-018-0057-3 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N58a87abf80924c808ceeb3acc6898db3
4 schema:citation sg:pub.10.1007/978-3-642-24624-1
5 sg:pub.10.1007/bf00656561
6 sg:pub.10.1038/am.2016.157
7 sg:pub.10.1038/nchem.1589
8 sg:pub.10.1038/ncomms11711
9 sg:pub.10.1038/ncomms1882
10 sg:pub.10.1038/nnano.2012.95
11 sg:pub.10.1038/nnano.2012.96
12 sg:pub.10.1038/nnano.2013.277
13 sg:pub.10.1038/nnano.2015.143
14 sg:pub.10.1038/nphys0010
15 sg:pub.10.1038/nphys3527
16 sg:pub.10.1038/nphys3538
17 sg:pub.10.1038/nphys3580
18 sg:pub.10.1038/nphys699
19 https://doi.org/10.1002/pssb.201600235
20 https://doi.org/10.1016/0167-9317(84)90057-1
21 https://doi.org/10.1021/acsnano.5b06727
22 https://doi.org/10.1021/acsnano.5b07848
23 https://doi.org/10.1021/nl2035018
24 https://doi.org/10.1063/1.4928658
25 https://doi.org/10.1073/pnas.1211387110
26 https://doi.org/10.1080/00018737500101391
27 https://doi.org/10.1088/0953-8984/21/39/395502
28 https://doi.org/10.1088/0953-8984/6/24/010
29 https://doi.org/10.1088/1367-2630/16/11/115003
30 https://doi.org/10.1103/physrevb.37.2741
31 https://doi.org/10.1103/physrevb.41.7892
32 https://doi.org/10.1103/physrevb.77.165135
33 https://doi.org/10.1103/physrevb.84.153402
34 https://doi.org/10.1103/physrevb.85.205302
35 https://doi.org/10.1103/physrevb.85.224532
36 https://doi.org/10.1103/physrevb.88.245436
37 https://doi.org/10.1103/physrevb.89.235115
38 https://doi.org/10.1103/physrevlett.102.166402
39 https://doi.org/10.1103/physrevlett.107.107403
40 https://doi.org/10.1103/physrevlett.109.186804
41 https://doi.org/10.1103/physrevlett.111.126801
42 https://doi.org/10.1103/physrevlett.35.120
43 https://doi.org/10.1103/physrevlett.77.3865
44 https://doi.org/10.1103/physrevlett.87.037004
45 https://doi.org/10.1103/physrevlett.92.086401
46 https://doi.org/10.1126/science.1065068
47 https://doi.org/10.1126/science.1250140
48 https://doi.org/10.1126/science.aab2277
49 https://doi.org/10.1380/ejssnt.2012.400
50 schema:datePublished 2018-12
51 schema:datePublishedReg 2018-12-01
52 schema:description Realization of unconventional physical properties in two-dimensional (2D) transition-metal dichalcogenides (TMDs) is currently one of the key challenges in condensed-matter systems. However, the electronic properties of 2D TMDs remain largely unexplored compared to those of their bulk counterparts. Here, we report the fabrication of a high-quality monolayer NbSe2 film with a trigonal prismatic structure by molecular beam epitaxy, and the study of its electronic properties by scanning tunneling microscopy, angle-resolved photoemission spectroscopy, and electrical transport measurements, together with first-principles band-structure calculations. In addition to a charge density wave (CDW) with 3 × 3 periodicity and superconductivity below 1.5 K, we observed sizable (~0.1 eV) band splitting along the Γ-K cut in the Brillouin zone due to inversion symmetry breaking in the monolayer crystal. This splitting is highly anisotropic in k space, leading to a spin-split van-Hove singularity in the band structure. The present results suggest the importance of spin–orbit coupling and symmetry breaking for unconventional superconductivity and CDW properties in monolayer TMDs. The interplay between symmetry breaking, superconductivity and charge density wave in monolayer NbSe2 is unveiled by spectroscopic techniques. A team led by Takafumi Sato at Tohoku University used molecular beam epitaxy to fabricate atomically thin NbSe2 films on bilayer graphene, and investigated their electronic properties by a combination of electrical transport measurements, scanning tunneling microscopy, and angle-resolved photoemission spectroscopy. A charge density wave transition with a strong periodic charge modulation was detected below 1.5 K, accompanied by the emergence of superconductivity. Owing to the inversion symmetry breaking occurring in monolayer NbSe2, a band splitting developed along the Γ-Κ direction of the Brillouin zone. Such band splitting was found to be related to the robustness of the observed superconductivity, as well as the formation of the charge density wave.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree false
56 schema:isPartOf N03e3f5bacadb49bd823869d9bbfa717d
57 Nd7af1ec516b64116ba87b4d44f686d4b
58 sg:journal.1290452
59 schema:name Anisotropic band splitting in monolayer NbSe2: implications for superconductivity and charge density wave
60 schema:pagination 12
61 schema:productId N495688b982fe4bac9db3808a122a1674
62 Nde26cd7f2c6e449ba613a84cfce7d3ad
63 Ne84a432ee1fd4ac0967803f7a4daebd4
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103702888
65 https://doi.org/10.1038/s41699-018-0057-3
66 schema:sdDatePublished 2019-04-10T14:05
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N5ca8160ba2af4fd6bccff565dedde7d2
69 schema:url https://www.nature.com/articles/s41699-018-0057-3
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N03e3f5bacadb49bd823869d9bbfa717d schema:volumeNumber 2
74 rdf:type schema:PublicationVolume
75 N28911aac74c64cc682c99d82dd733723 rdf:first sg:person.016362132540.91
76 rdf:rest Nc8302e059e1247659aa077e94dd84265
77 N43a580da337940f48984fbf1a1082865 rdf:first sg:person.0653226316.52
78 rdf:rest Nd1276fbc96264f17a97ccea1de58a484
79 N495688b982fe4bac9db3808a122a1674 schema:name doi
80 schema:value 10.1038/s41699-018-0057-3
81 rdf:type schema:PropertyValue
82 N4aa8d5360b86476d831e9d0c5fd53bbd rdf:first sg:person.012724005105.19
83 rdf:rest rdf:nil
84 N559bc35d6dd943b5888e5821bc4ec516 rdf:first sg:person.01353636572.48
85 rdf:rest Ncdad4677a628470bb46334e2cf4c5ad3
86 N58a87abf80924c808ceeb3acc6898db3 rdf:first sg:person.01017113575.64
87 rdf:rest N559bc35d6dd943b5888e5821bc4ec516
88 N5ca8160ba2af4fd6bccff565dedde7d2 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N6554a06ff1da4cfdb7235247e1544601 rdf:first sg:person.012324742574.77
91 rdf:rest N4aa8d5360b86476d831e9d0c5fd53bbd
92 Nc8302e059e1247659aa077e94dd84265 rdf:first sg:person.015452564551.53
93 rdf:rest N6554a06ff1da4cfdb7235247e1544601
94 Ncdad4677a628470bb46334e2cf4c5ad3 rdf:first sg:person.0615170252.58
95 rdf:rest N43a580da337940f48984fbf1a1082865
96 Nd1276fbc96264f17a97ccea1de58a484 rdf:first sg:person.01135114004.92
97 rdf:rest Nd9beb94c38004ae48cd61fd772f8c376
98 Nd7af1ec516b64116ba87b4d44f686d4b schema:issueNumber 1
99 rdf:type schema:PublicationIssue
100 Nd9beb94c38004ae48cd61fd772f8c376 rdf:first sg:person.07650541471.77
101 rdf:rest N28911aac74c64cc682c99d82dd733723
102 Nde26cd7f2c6e449ba613a84cfce7d3ad schema:name dimensions_id
103 schema:value pub.1103702888
104 rdf:type schema:PropertyValue
105 Ne84a432ee1fd4ac0967803f7a4daebd4 schema:name readcube_id
106 schema:value 08805ec19db2cc57c12509a2335d7f39ba3ab2968fc354468406c096bb947706
107 rdf:type schema:PropertyValue
108 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
109 schema:name Chemical Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
112 schema:name Physical Chemistry (incl. Structural)
113 rdf:type schema:DefinedTerm
114 sg:grant.5855401 http://pending.schema.org/fundedItem sg:pub.10.1038/s41699-018-0057-3
115 rdf:type schema:MonetaryGrant
116 sg:grant.5865418 http://pending.schema.org/fundedItem sg:pub.10.1038/s41699-018-0057-3
117 rdf:type schema:MonetaryGrant
118 sg:grant.5904448 http://pending.schema.org/fundedItem sg:pub.10.1038/s41699-018-0057-3
119 rdf:type schema:MonetaryGrant
120 sg:journal.1290452 schema:issn 2397-7132
121 schema:name npj 2D Materials and Applications
122 rdf:type schema:Periodical
123 sg:person.01017113575.64 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
124 schema:familyName Nakata
125 schema:givenName Yuki
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017113575.64
127 rdf:type schema:Person
128 sg:person.01135114004.92 schema:affiliation https://www.grid.ac/institutes/grid.32197.3e
129 schema:familyName Hitosugi
130 schema:givenName Taro
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135114004.92
132 rdf:type schema:Person
133 sg:person.012324742574.77 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
134 schema:familyName Takahashi
135 schema:givenName Takashi
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012324742574.77
137 rdf:type schema:Person
138 sg:person.012724005105.19 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
139 schema:familyName Sato
140 schema:givenName Takafumi
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012724005105.19
142 rdf:type schema:Person
143 sg:person.01353636572.48 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
144 schema:familyName Sugawara
145 schema:givenName Katsuaki
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353636572.48
147 rdf:type schema:Person
148 sg:person.015452564551.53 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
149 schema:familyName Hasegawa
150 schema:givenName Shuji
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015452564551.53
152 rdf:type schema:Person
153 sg:person.016362132540.91 schema:affiliation https://www.grid.ac/institutes/grid.263023.6
154 schema:familyName Ueno
155 schema:givenName Keiji
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016362132540.91
157 rdf:type schema:Person
158 sg:person.0615170252.58 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
159 schema:familyName Ichinokura
160 schema:givenName Satoru
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615170252.58
162 rdf:type schema:Person
163 sg:person.0653226316.52 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
164 schema:familyName Okada
165 schema:givenName Yoshinori
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653226316.52
167 rdf:type schema:Person
168 sg:person.07650541471.77 schema:affiliation https://www.grid.ac/institutes/grid.474689.0
169 schema:familyName Koretsune
170 schema:givenName Takashi
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07650541471.77
172 rdf:type schema:Person
173 sg:pub.10.1007/978-3-642-24624-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015825270
174 https://doi.org/10.1007/978-3-642-24624-1
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/bf00656561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029282988
177 https://doi.org/10.1007/bf00656561
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/am.2016.157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049267994
180 https://doi.org/10.1038/am.2016.157
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nchem.1589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050119463
183 https://doi.org/10.1038/nchem.1589
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/ncomms11711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039931872
186 https://doi.org/10.1038/ncomms11711
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/ncomms1882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049548334
189 https://doi.org/10.1038/ncomms1882
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nnano.2012.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027952436
192 https://doi.org/10.1038/nnano.2012.95
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/nnano.2012.96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038550073
195 https://doi.org/10.1038/nnano.2012.96
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/nnano.2013.277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022386904
198 https://doi.org/10.1038/nnano.2013.277
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/nnano.2015.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014123450
201 https://doi.org/10.1038/nnano.2015.143
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/nphys0010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041281578
204 https://doi.org/10.1038/nphys0010
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/nphys3527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006940404
207 https://doi.org/10.1038/nphys3527
208 rdf:type schema:CreativeWork
209 sg:pub.10.1038/nphys3538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041998588
210 https://doi.org/10.1038/nphys3538
211 rdf:type schema:CreativeWork
212 sg:pub.10.1038/nphys3580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049602911
213 https://doi.org/10.1038/nphys3580
214 rdf:type schema:CreativeWork
215 sg:pub.10.1038/nphys699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038992085
216 https://doi.org/10.1038/nphys699
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1002/pssb.201600235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020747675
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/0167-9317(84)90057-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017379974
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1021/acsnano.5b06727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035883420
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1021/acsnano.5b07848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044774428
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1021/nl2035018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016422367
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1063/1.4928658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058095116
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1073/pnas.1211387110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033284250
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1080/00018737500101391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020691468
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1088/0953-8984/21/39/395502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037182159
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1088/0953-8984/6/24/010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005685463
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1088/1367-2630/16/11/115003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059136381
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1103/physrevb.37.2741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060545253
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1103/physrevb.41.7892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060554329
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1103/physrevb.77.165135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035170567
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1103/physrevb.84.153402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004102128
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1103/physrevb.85.205302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030578033
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1103/physrevb.85.224532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060639138
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1103/physrevb.88.245436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011676895
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1103/physrevb.89.235115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060643454
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1103/physrevlett.102.166402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043660958
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1103/physrevlett.107.107403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009747867
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1103/physrevlett.109.186804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030396482
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1103/physrevlett.111.126801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060762089
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1103/physrevlett.35.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060779458
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1103/physrevlett.77.3865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814179
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1103/physrevlett.87.037004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027238372
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1103/physrevlett.92.086401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042098123
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1126/science.1065068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039352292
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1126/science.1250140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036074202
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1126/science.aab2277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042751729
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1380/ejssnt.2012.400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020967496
279 rdf:type schema:CreativeWork
280 https://www.grid.ac/institutes/grid.263023.6 schema:alternateName Saitama University
281 schema:name Department of Chemistry, Saitama University, 338-8570, Saitama, Japan
282 rdf:type schema:Organization
283 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
284 schema:name Department of Physics, University of Tokyo, 113-0033, Tokyo, Japan
285 rdf:type schema:Organization
286 https://www.grid.ac/institutes/grid.32197.3e schema:alternateName Tokyo Institute of Technology
287 schema:name Department of Applied Chemistry, Tokyo institute of Technology, 152-8550, Tokyo, Japan
288 WPI-Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
289 rdf:type schema:Organization
290 https://www.grid.ac/institutes/grid.474689.0 schema:alternateName RIKEN Center for Emergent Matter Science
291 schema:name Department of Physics, Tohoku University, 980-8578, Sendai, Japan
292 RIKEN Center for Emergent Matter Science, 351-0198, Wako, Japan
293 rdf:type schema:Organization
294 https://www.grid.ac/institutes/grid.69566.3a schema:alternateName Tohoku University
295 schema:name Center for Spintronics Research Network, Tohoku University, 980-8577, Sendai, Japan
296 Department of Physics, Tohoku University, 980-8578, Sendai, Japan
297 WPI-Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
298 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...