Electrical detection of hyperbolic phonon-polaritons in heterostructures of graphene and boron nitride View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Achim Woessner, Romain Parret, Diana Davydovskaya, Yuanda Gao, Jhih-Sheng Wu, Mark B. Lundeberg, Sébastien Nanot, Pablo Alonso-González, Kenji Watanabe, Takashi Taniguchi, Rainer Hillenbrand, Michael M. Fogler, James Hone, Frank H. L. Koppens

ABSTRACT

Light properties in the mid-infrared can be controlled at a deep subwavelength scale using hyperbolic phonons-polaritons of hexagonal boron nitride. While propagating as waveguided modes hyperbolic phonons-polaritons can concentrate the electric field in a chosen nano-volume. Such a behavior is at the heart of many applications including subdiffraction imaging and sensing. Here we employ HPPs in heterostructures of hexagonal boron nitride and graphene as new nano-optoelectronic platform by uniting the benefits of efficient hot-carrier photoconversion in graphene and the hyperbolic nature of hexagonal boron nitride. We demonstrate electrical detection of hyperbolic phonons-polaritons by guiding them towards a graphene pn-junction. We shine a laser beam onto a gap in metal gates underneath the heterostructure, where the light is converted into hyperbolic phonons-polaritons. The hyperbolic phonons-polaritons then propagate as confined rays heating up the graphene leading to a strong photocurrent. This concept is exploited to boost the external responsivity of mid-infrared photodetectors, overcoming the limitation of graphene pn-junction detectors due to their small active area and weak absorption. Moreover this type of detector exhibits tunable frequency selectivity due to the hyperbolic phonons-polaritons, which combined with its high responsivity paves the way for efficient high-resolution mid-infrared imaging. h-BN hyperbolic phonon-polaritons can be probed electrically in a van der Waals photodetector by guiding them towards a graphene junction. A team led by F.H.L. Koppens at ICFO developed a nano-optoelectronic device whereby light from a laser beam, shone on a heterostructure of monolayer graphene encapsulated in h-BN, is converted to hyperbolic phonon-polaritons. Once the latter are launched at the edge of a metallic bottom split gate, they propagate as highly confined and directional rays towards graphene, where they are absorbed. This results in the generation of hot carriers which diffuse spatially towards the graphene junction, giving rise to an inhomogeneous temperature distribution which, in turn, leads to a strong photo-response. Besides enhanced responsivity and room temperature operation, this mid-infrared photodetector possesses tunable frequency selectivity, making it appealing for imaging and sensing applications. More... »

PAGES

25

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41699-017-0031-5

DOI

http://dx.doi.org/10.1038/s41699-017-0031-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090994676


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "ICFO\u2014Institut de Ci\u00e9ncies Fot\u00f2niques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Woessner", 
        "givenName": "Achim", 
        "id": "sg:person.01324766642.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324766642.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "ICFO\u2014Institut de Ci\u00e9ncies Fot\u00f2niques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parret", 
        "givenName": "Romain", 
        "id": "sg:person.0626056510.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626056510.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "ICFO\u2014Institut de Ci\u00e9ncies Fot\u00f2niques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Davydovskaya", 
        "givenName": "Diana", 
        "id": "sg:person.015177777557.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015177777557.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Columbia University", 
          "id": "https://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Mechanical Engineering, Columbia University, 10027, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Yuanda", 
        "id": "sg:person.01320142344.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320142344.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, San Diego", 
          "id": "https://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "University of California San Diego Department of Physics, 0319 9500 Gilman Drive, 92093-0319, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Jhih-Sheng", 
        "id": "sg:person.0773250175.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773250175.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "ICFO\u2014Institut de Ci\u00e9ncies Fot\u00f2niques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lundeberg", 
        "givenName": "Mark B.", 
        "id": "sg:person.0601362542.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601362542.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "ICFO\u2014Institut de Ci\u00e9ncies Fot\u00f2niques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nanot", 
        "givenName": "S\u00e9bastien", 
        "id": "sg:person.0720237201.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720237201.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "CIC nanoGUNE, 20018, Donostia-San Sebastian, Spain", 
            "Departamento de F\u00edsica, Universidad de Oviedo, 33007, Oviedo, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alonso-Gonz\u00e1lez", 
        "givenName": "Pablo", 
        "id": "sg:person.01157012160.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157012160.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "National Institute for Materials Science, 1-1 Namiki, 305-0044, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanabe", 
        "givenName": "Kenji", 
        "id": "sg:person.010575643400.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010575643400.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "National Institute for Materials Science, 1-1 Namiki, 305-0044, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taniguchi", 
        "givenName": "Takashi", 
        "id": "sg:person.0765715521.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765715521.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ikerbasque", 
          "id": "https://www.grid.ac/institutes/grid.424810.b", 
          "name": [
            "CIC nanoGUNE and UPV/EHU, 20018, Donostia-San Sebastian, Spain", 
            "IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hillenbrand", 
        "givenName": "Rainer", 
        "id": "sg:person.0767156551.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767156551.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, San Diego", 
          "id": "https://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "University of California San Diego Department of Physics, 0319 9500 Gilman Drive, 92093-0319, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fogler", 
        "givenName": "Michael M.", 
        "id": "sg:person.0705553512.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705553512.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Columbia University", 
          "id": "https://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Mechanical Engineering, Columbia University, 10027, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hone", 
        "givenName": "James", 
        "id": "sg:person.01302747466.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302747466.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituci\u00f3 Catalana de Recerca i Estudis Avan\u00e7ats", 
          "id": "https://www.grid.ac/institutes/grid.425902.8", 
          "name": [
            "ICFO\u2014Institut de Ci\u00e9ncies Fot\u00f2niques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain", 
            "ICREA\u2014Instituci\u00f3 Catalana de Recer\u00e7a i Estudis Avancats, 08010, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koppens", 
        "givenName": "Frank H. L.", 
        "id": "sg:person.015354420404.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015354420404.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1218461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001321657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001693824", 
          "https://doi.org/10.1038/ncomms2951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002975518", 
          "https://doi.org/10.1038/ncomms8507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adom.201600723", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004728734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2014.215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008640603", 
          "https://doi.org/10.1038/nnano.2014.215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.infrared.2010.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010322701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms6221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012691322", 
          "https://doi.org/10.1038/ncomms6221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl903451y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013129771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl903451y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013129771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013808003", 
          "https://doi.org/10.1038/nmat4755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms10783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014827675", 
          "https://doi.org/10.1038/ncomms10783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1244358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016025802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018587379", 
          "https://doi.org/10.1038/nnano.2010.172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018587379", 
          "https://doi.org/10.1038/nnano.2010.172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2015.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019239259", 
          "https://doi.org/10.1038/nnano.2015.131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl2019068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019817320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl2019068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019817320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aag1992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023209376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2008.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026227105", 
          "https://doi.org/10.1038/nphoton.2008.53"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms7963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034624928", 
          "https://doi.org/10.1038/ncomms7963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2015.166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038329914", 
          "https://doi.org/10.1038/nphoton.2015.166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.096807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041026766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.096807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041026766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042942708", 
          "https://doi.org/10.1038/nmat4792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.88", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048019805", 
          "https://doi.org/10.1038/nnano.2012.88"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn203377t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048095000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1246833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052826500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.5b01755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055120776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.5b03740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055121060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.6b01341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055121491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl4042627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056220531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl500602n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056220687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl502847v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056220981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn502822z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056226156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2930681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057885115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.205430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060647977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.205430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060647977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1211384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062465511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms14311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083396364", 
          "https://doi.org/10.1038/ncomms14311"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Light properties in the mid-infrared can be controlled at a deep subwavelength scale using hyperbolic phonons-polaritons of hexagonal boron nitride. While propagating as waveguided modes hyperbolic phonons-polaritons can concentrate the electric field in a chosen nano-volume. Such a behavior is at the heart of many applications including subdiffraction imaging and sensing. Here we employ HPPs in heterostructures of hexagonal boron nitride and graphene as new nano-optoelectronic platform by uniting the benefits of efficient hot-carrier photoconversion in graphene and the hyperbolic nature of hexagonal boron nitride. We demonstrate electrical detection of hyperbolic phonons-polaritons by guiding them towards a graphene pn-junction. We shine a laser beam onto a gap in metal gates underneath the heterostructure, where the light is converted into hyperbolic phonons-polaritons. The hyperbolic phonons-polaritons then propagate as confined rays heating up the graphene leading to a strong photocurrent. This concept is exploited to boost the external responsivity of mid-infrared photodetectors, overcoming the limitation of graphene pn-junction detectors due to their small active area and weak absorption. Moreover this type of detector exhibits tunable frequency selectivity due to the hyperbolic phonons-polaritons, which combined with its high responsivity paves the way for efficient high-resolution mid-infrared imaging. h-BN hyperbolic phonon-polaritons can be probed electrically in a van der Waals photodetector by guiding them towards a graphene junction. A team led by F.H.L. Koppens at ICFO developed a nano-optoelectronic device whereby light from a laser beam, shone on a heterostructure of monolayer graphene encapsulated in h-BN, is converted to hyperbolic phonon-polaritons. Once the latter are launched at the edge of a metallic bottom split gate, they propagate as highly confined and directional rays towards graphene, where they are absorbed. This results in the generation of hot carriers which diffuse spatially towards the graphene junction, giving rise to an inhomogeneous temperature distribution which, in turn, leads to a strong photo-response. Besides enhanced responsivity and room temperature operation, this mid-infrared photodetector possesses tunable frequency selectivity, making it appealing for imaging and sensing applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41699-017-0031-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5495369", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3798042", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1290452", 
        "issn": [
          "2397-7132"
        ], 
        "name": "npj 2D Materials and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "Electrical detection of hyperbolic phonon-polaritons in heterostructures of graphene and boron nitride", 
    "pagination": "25", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e05fbd8a2bfa5296e0e00911108ac1de239bdb077b209e0d054d6dbb6431e48d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41699-017-0031-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090994676"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41699-017-0031-5", 
      "https://app.dimensions.ai/details/publication/pub.1090994676"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000493.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41699-017-0031-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41699-017-0031-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41699-017-0031-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41699-017-0031-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41699-017-0031-5'


 

This table displays all metadata directly associated to this object as RDF triples.

299 TRIPLES      21 PREDICATES      61 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41699-017-0031-5 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nb50c492edb7948bba4ae9ab8817d3003
4 schema:citation sg:pub.10.1038/ncomms10783
5 sg:pub.10.1038/ncomms14311
6 sg:pub.10.1038/ncomms2951
7 sg:pub.10.1038/ncomms6221
8 sg:pub.10.1038/ncomms7963
9 sg:pub.10.1038/ncomms8507
10 sg:pub.10.1038/nmat4755
11 sg:pub.10.1038/nmat4792
12 sg:pub.10.1038/nnano.2010.172
13 sg:pub.10.1038/nnano.2012.88
14 sg:pub.10.1038/nnano.2014.215
15 sg:pub.10.1038/nnano.2015.131
16 sg:pub.10.1038/nphoton.2008.53
17 sg:pub.10.1038/nphoton.2015.166
18 https://doi.org/10.1002/adom.201600723
19 https://doi.org/10.1016/j.infrared.2010.12.003
20 https://doi.org/10.1021/acs.nanolett.5b01755
21 https://doi.org/10.1021/acs.nanolett.5b03740
22 https://doi.org/10.1021/acs.nanolett.6b01341
23 https://doi.org/10.1021/nl2019068
24 https://doi.org/10.1021/nl4042627
25 https://doi.org/10.1021/nl500602n
26 https://doi.org/10.1021/nl502847v
27 https://doi.org/10.1021/nl903451y
28 https://doi.org/10.1021/nn203377t
29 https://doi.org/10.1021/nn502822z
30 https://doi.org/10.1063/1.2930681
31 https://doi.org/10.1103/physrevb.92.205430
32 https://doi.org/10.1103/physrevlett.102.096807
33 https://doi.org/10.1126/science.1211384
34 https://doi.org/10.1126/science.1218461
35 https://doi.org/10.1126/science.1244358
36 https://doi.org/10.1126/science.1246833
37 https://doi.org/10.1126/science.aag1992
38 schema:datePublished 2017-12
39 schema:datePublishedReg 2017-12-01
40 schema:description Light properties in the mid-infrared can be controlled at a deep subwavelength scale using hyperbolic phonons-polaritons of hexagonal boron nitride. While propagating as waveguided modes hyperbolic phonons-polaritons can concentrate the electric field in a chosen nano-volume. Such a behavior is at the heart of many applications including subdiffraction imaging and sensing. Here we employ HPPs in heterostructures of hexagonal boron nitride and graphene as new nano-optoelectronic platform by uniting the benefits of efficient hot-carrier photoconversion in graphene and the hyperbolic nature of hexagonal boron nitride. We demonstrate electrical detection of hyperbolic phonons-polaritons by guiding them towards a graphene pn-junction. We shine a laser beam onto a gap in metal gates underneath the heterostructure, where the light is converted into hyperbolic phonons-polaritons. The hyperbolic phonons-polaritons then propagate as confined rays heating up the graphene leading to a strong photocurrent. This concept is exploited to boost the external responsivity of mid-infrared photodetectors, overcoming the limitation of graphene pn-junction detectors due to their small active area and weak absorption. Moreover this type of detector exhibits tunable frequency selectivity due to the hyperbolic phonons-polaritons, which combined with its high responsivity paves the way for efficient high-resolution mid-infrared imaging. h-BN hyperbolic phonon-polaritons can be probed electrically in a van der Waals photodetector by guiding them towards a graphene junction. A team led by F.H.L. Koppens at ICFO developed a nano-optoelectronic device whereby light from a laser beam, shone on a heterostructure of monolayer graphene encapsulated in h-BN, is converted to hyperbolic phonon-polaritons. Once the latter are launched at the edge of a metallic bottom split gate, they propagate as highly confined and directional rays towards graphene, where they are absorbed. This results in the generation of hot carriers which diffuse spatially towards the graphene junction, giving rise to an inhomogeneous temperature distribution which, in turn, leads to a strong photo-response. Besides enhanced responsivity and room temperature operation, this mid-infrared photodetector possesses tunable frequency selectivity, making it appealing for imaging and sensing applications.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf N2de21a5342c84912aabd7751348d8a2b
45 N5575939b5af24e9cbaa83962d2a90f2f
46 sg:journal.1290452
47 schema:name Electrical detection of hyperbolic phonon-polaritons in heterostructures of graphene and boron nitride
48 schema:pagination 25
49 schema:productId N7282ae058cc945318403510b8613a1b2
50 Nde8e8df589d243a4b42cf9bc23b44999
51 Ne81a03b33de14dd59f2aa739d43c5462
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090994676
53 https://doi.org/10.1038/s41699-017-0031-5
54 schema:sdDatePublished 2019-04-10T23:20
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N55847785051b47ed93d927bb430aa45e
57 schema:url https://www.nature.com/articles/s41699-017-0031-5
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N003ee01743734b50a9744a38ac53eb70 rdf:first sg:person.010575643400.34
62 rdf:rest N7b019290c6be41d0b48ec78452a86554
63 N0db41c01c919482684b437496a589af6 rdf:first sg:person.0720237201.43
64 rdf:rest Na30a9b5dd9d64e9dbf3041fe08ca8836
65 N2de21a5342c84912aabd7751348d8a2b schema:volumeNumber 1
66 rdf:type schema:PublicationVolume
67 N3368a4aaa7dd4639aac5ff6180f3c2f6 rdf:first sg:person.015354420404.02
68 rdf:rest rdf:nil
69 N3da6aa3da17c4919b1e78b3789b417e9 schema:name ICFO—Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain
70 rdf:type schema:Organization
71 N5575939b5af24e9cbaa83962d2a90f2f schema:issueNumber 1
72 rdf:type schema:PublicationIssue
73 N55847785051b47ed93d927bb430aa45e schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N59ff11bc1a184a94857956f7101efc1a rdf:first sg:person.0773250175.79
76 rdf:rest N765becd5eb3f43a69b322cb9e10de31c
77 N636fec3a409e4ad0a719c7aa9093f530 rdf:first sg:person.015177777557.76
78 rdf:rest Naad6b16060b04ec8a1c91d42700451e4
79 N7282ae058cc945318403510b8613a1b2 schema:name dimensions_id
80 schema:value pub.1090994676
81 rdf:type schema:PropertyValue
82 N74c751d8fcb24fecab7a711ac795c416 schema:name ICFO—Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain
83 rdf:type schema:Organization
84 N765becd5eb3f43a69b322cb9e10de31c rdf:first sg:person.0601362542.43
85 rdf:rest N0db41c01c919482684b437496a589af6
86 N78213d1963b44e969e16ecb92ebd6d19 schema:name ICFO—Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain
87 rdf:type schema:Organization
88 N7b019290c6be41d0b48ec78452a86554 rdf:first sg:person.0765715521.02
89 rdf:rest Ncad9ca457ae44a009ba3530552534e0d
90 N83c2b6d64b6e43aab2ed24b4afebfa48 rdf:first sg:person.0626056510.32
91 rdf:rest N636fec3a409e4ad0a719c7aa9093f530
92 N8ccd5e885ceb4950b65dc1ca3bdc9c6a schema:name ICFO—Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain
93 rdf:type schema:Organization
94 N94219f63c567437bbdf9cc7d02ca1a3a rdf:first sg:person.01302747466.26
95 rdf:rest N3368a4aaa7dd4639aac5ff6180f3c2f6
96 Na30a9b5dd9d64e9dbf3041fe08ca8836 rdf:first sg:person.01157012160.51
97 rdf:rest N003ee01743734b50a9744a38ac53eb70
98 Na4c0604bcc8949c1a4c9c594908fd1b8 schema:name ICFO—Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain
99 rdf:type schema:Organization
100 Naad6b16060b04ec8a1c91d42700451e4 rdf:first sg:person.01320142344.34
101 rdf:rest N59ff11bc1a184a94857956f7101efc1a
102 Nb50c492edb7948bba4ae9ab8817d3003 rdf:first sg:person.01324766642.44
103 rdf:rest N83c2b6d64b6e43aab2ed24b4afebfa48
104 Ncad9ca457ae44a009ba3530552534e0d rdf:first sg:person.0767156551.21
105 rdf:rest Nd9a4ca88d8f2444fa9add53d9333454f
106 Nd9a4ca88d8f2444fa9add53d9333454f rdf:first sg:person.0705553512.08
107 rdf:rest N94219f63c567437bbdf9cc7d02ca1a3a
108 Nde8e8df589d243a4b42cf9bc23b44999 schema:name doi
109 schema:value 10.1038/s41699-017-0031-5
110 rdf:type schema:PropertyValue
111 Ne81a03b33de14dd59f2aa739d43c5462 schema:name readcube_id
112 schema:value e05fbd8a2bfa5296e0e00911108ac1de239bdb077b209e0d054d6dbb6431e48d
113 rdf:type schema:PropertyValue
114 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
115 schema:name Engineering
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
118 schema:name Materials Engineering
119 rdf:type schema:DefinedTerm
120 sg:grant.3798042 http://pending.schema.org/fundedItem sg:pub.10.1038/s41699-017-0031-5
121 rdf:type schema:MonetaryGrant
122 sg:grant.5495369 http://pending.schema.org/fundedItem sg:pub.10.1038/s41699-017-0031-5
123 rdf:type schema:MonetaryGrant
124 sg:journal.1290452 schema:issn 2397-7132
125 schema:name npj 2D Materials and Applications
126 rdf:type schema:Periodical
127 sg:person.010575643400.34 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
128 schema:familyName Watanabe
129 schema:givenName Kenji
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010575643400.34
131 rdf:type schema:Person
132 sg:person.01157012160.51 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
133 schema:familyName Alonso-González
134 schema:givenName Pablo
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157012160.51
136 rdf:type schema:Person
137 sg:person.01302747466.26 schema:affiliation https://www.grid.ac/institutes/grid.21729.3f
138 schema:familyName Hone
139 schema:givenName James
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302747466.26
141 rdf:type schema:Person
142 sg:person.01320142344.34 schema:affiliation https://www.grid.ac/institutes/grid.21729.3f
143 schema:familyName Gao
144 schema:givenName Yuanda
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320142344.34
146 rdf:type schema:Person
147 sg:person.01324766642.44 schema:affiliation Na4c0604bcc8949c1a4c9c594908fd1b8
148 schema:familyName Woessner
149 schema:givenName Achim
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324766642.44
151 rdf:type schema:Person
152 sg:person.015177777557.76 schema:affiliation N3da6aa3da17c4919b1e78b3789b417e9
153 schema:familyName Davydovskaya
154 schema:givenName Diana
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015177777557.76
156 rdf:type schema:Person
157 sg:person.015354420404.02 schema:affiliation https://www.grid.ac/institutes/grid.425902.8
158 schema:familyName Koppens
159 schema:givenName Frank H. L.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015354420404.02
161 rdf:type schema:Person
162 sg:person.0601362542.43 schema:affiliation N8ccd5e885ceb4950b65dc1ca3bdc9c6a
163 schema:familyName Lundeberg
164 schema:givenName Mark B.
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601362542.43
166 rdf:type schema:Person
167 sg:person.0626056510.32 schema:affiliation N78213d1963b44e969e16ecb92ebd6d19
168 schema:familyName Parret
169 schema:givenName Romain
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626056510.32
171 rdf:type schema:Person
172 sg:person.0705553512.08 schema:affiliation https://www.grid.ac/institutes/grid.266100.3
173 schema:familyName Fogler
174 schema:givenName Michael M.
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705553512.08
176 rdf:type schema:Person
177 sg:person.0720237201.43 schema:affiliation N74c751d8fcb24fecab7a711ac795c416
178 schema:familyName Nanot
179 schema:givenName Sébastien
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720237201.43
181 rdf:type schema:Person
182 sg:person.0765715521.02 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
183 schema:familyName Taniguchi
184 schema:givenName Takashi
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765715521.02
186 rdf:type schema:Person
187 sg:person.0767156551.21 schema:affiliation https://www.grid.ac/institutes/grid.424810.b
188 schema:familyName Hillenbrand
189 schema:givenName Rainer
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767156551.21
191 rdf:type schema:Person
192 sg:person.0773250175.79 schema:affiliation https://www.grid.ac/institutes/grid.266100.3
193 schema:familyName Wu
194 schema:givenName Jhih-Sheng
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773250175.79
196 rdf:type schema:Person
197 sg:pub.10.1038/ncomms10783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014827675
198 https://doi.org/10.1038/ncomms10783
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/ncomms14311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083396364
201 https://doi.org/10.1038/ncomms14311
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/ncomms2951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001693824
204 https://doi.org/10.1038/ncomms2951
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/ncomms6221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012691322
207 https://doi.org/10.1038/ncomms6221
208 rdf:type schema:CreativeWork
209 sg:pub.10.1038/ncomms7963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034624928
210 https://doi.org/10.1038/ncomms7963
211 rdf:type schema:CreativeWork
212 sg:pub.10.1038/ncomms8507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002975518
213 https://doi.org/10.1038/ncomms8507
214 rdf:type schema:CreativeWork
215 sg:pub.10.1038/nmat4755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013808003
216 https://doi.org/10.1038/nmat4755
217 rdf:type schema:CreativeWork
218 sg:pub.10.1038/nmat4792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042942708
219 https://doi.org/10.1038/nmat4792
220 rdf:type schema:CreativeWork
221 sg:pub.10.1038/nnano.2010.172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018587379
222 https://doi.org/10.1038/nnano.2010.172
223 rdf:type schema:CreativeWork
224 sg:pub.10.1038/nnano.2012.88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048019805
225 https://doi.org/10.1038/nnano.2012.88
226 rdf:type schema:CreativeWork
227 sg:pub.10.1038/nnano.2014.215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008640603
228 https://doi.org/10.1038/nnano.2014.215
229 rdf:type schema:CreativeWork
230 sg:pub.10.1038/nnano.2015.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019239259
231 https://doi.org/10.1038/nnano.2015.131
232 rdf:type schema:CreativeWork
233 sg:pub.10.1038/nphoton.2008.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026227105
234 https://doi.org/10.1038/nphoton.2008.53
235 rdf:type schema:CreativeWork
236 sg:pub.10.1038/nphoton.2015.166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038329914
237 https://doi.org/10.1038/nphoton.2015.166
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1002/adom.201600723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004728734
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1016/j.infrared.2010.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010322701
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1021/acs.nanolett.5b01755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055120776
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1021/acs.nanolett.5b03740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055121060
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1021/acs.nanolett.6b01341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055121491
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1021/nl2019068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019817320
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1021/nl4042627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056220531
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1021/nl500602n schema:sameAs https://app.dimensions.ai/details/publication/pub.1056220687
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1021/nl502847v schema:sameAs https://app.dimensions.ai/details/publication/pub.1056220981
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1021/nl903451y schema:sameAs https://app.dimensions.ai/details/publication/pub.1013129771
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1021/nn203377t schema:sameAs https://app.dimensions.ai/details/publication/pub.1048095000
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1021/nn502822z schema:sameAs https://app.dimensions.ai/details/publication/pub.1056226156
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1063/1.2930681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057885115
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1103/physrevb.92.205430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060647977
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1103/physrevlett.102.096807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041026766
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1126/science.1211384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062465511
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1126/science.1218461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001321657
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1126/science.1244358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016025802
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1126/science.1246833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052826500
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1126/science.aag1992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023209376
278 rdf:type schema:CreativeWork
279 https://www.grid.ac/institutes/grid.10863.3c schema:alternateName University of Oviedo
280 schema:name CIC nanoGUNE, 20018, Donostia-San Sebastian, Spain
281 Departamento de Física, Universidad de Oviedo, 33007, Oviedo, Spain
282 rdf:type schema:Organization
283 https://www.grid.ac/institutes/grid.21729.3f schema:alternateName Columbia University
284 schema:name Department of Mechanical Engineering, Columbia University, 10027, New York, USA
285 rdf:type schema:Organization
286 https://www.grid.ac/institutes/grid.21941.3f schema:alternateName National Institute for Materials Science
287 schema:name National Institute for Materials Science, 1-1 Namiki, 305-0044, Tsukuba, Japan
288 rdf:type schema:Organization
289 https://www.grid.ac/institutes/grid.266100.3 schema:alternateName University of California, San Diego
290 schema:name University of California San Diego Department of Physics, 0319 9500 Gilman Drive, 92093-0319, La Jolla, CA, USA
291 rdf:type schema:Organization
292 https://www.grid.ac/institutes/grid.424810.b schema:alternateName Ikerbasque
293 schema:name CIC nanoGUNE and UPV/EHU, 20018, Donostia-San Sebastian, Spain
294 IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
295 rdf:type schema:Organization
296 https://www.grid.ac/institutes/grid.425902.8 schema:alternateName Institució Catalana de Recerca i Estudis Avançats
297 schema:name ICFO—Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain
298 ICREA—Institució Catalana de Recerça i Estudis Avancats, 08010, Barcelona, Spain
299 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...