Observational constraint of in-cloud supersaturation for simulations of aerosol rainout in atmospheric models View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Nobuhiro Moteki, Tatsuhiro Mori, Hitoshi Matsui, Sho Ohata

ABSTRACT

Quantitative simulation of an aerosol’s lifecycle by regional-scale and global-scale atmospheric models is mandatory for unbiased analysis and prediction of aerosol radiative forcing and climate change. Globally, aerosol deposition is dominated by the rainout process, which is mostly triggered by activation of aerosols to liquid droplets in supersaturated domains of precipitating clouds. However, the actual environmental supersaturation value that aerosols experience in precipitating clouds is difficult for models to predict, and it has never been constrained by observations; as a result, there is large uncertainty in atmospheric aerosol simulations. Here, by a particle-tracer analysis of 37 rainfall events in East Asia, near the largest source region of anthropogenic aerosols in the northern hemisphere, we observed that the environmental supersaturation actually experienced by the removed aerosols in precipitating clouds averaged 0.08 ± 0.03% and ranged from 0.03 to 0.2%. Simulations by a mixing-state-resolved global aerosol model showed that the simulated long-range transport efficiency and global atmospheric burden of black carbon aerosols can be changed by a factor of two or three as a result of a change in the environmental supersaturation in precipitating clouds within just 0.08 ± 0.03%. This result is attributable to the fact that the sensitivity of an aerosol’s rainout efficiency to environmental supersaturation is higher for the less-aged black carbon concentrated near source regions. Our results suggest that observational constraints of environmental supersaturation in precipitating clouds, particularly near source regions, are of fundamental importance for accurate simulation of the atmospheric burden of black carbon and other aerosols. A delicate balance determines whether or not precipitation will generate the rainout, or removal, of atmospheric aerosols. The process is critical for climate and human health, but is only approximately simulated in most models. A multi-institution team led by Nobuhiro Moteki from the University of Tokyo has quantified the cloud supersaturation conditions that are required to generate ‘nucleation scavenging’, the mechanism ultimately leading to aerosol rainout. By measuring black carbon aerosols in surface air before convective precipitation and comparing it to aerosols within the precipitation itself, the team established that rainout occurred with supersaturation of about 0.08%. The threshold, however, was lower for hydrophilic, older aerosols and higher for hydrophobic, younger aerosols. Using a global aerosol model, the research shows that the high threshold in young aerosols reduces rainout near emission sources and enhances atmospheric transport of aerosols to distant regions. More... »

PAGES

6

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41612-019-0063-y

DOI

http://dx.doi.org/10.1038/s41612-019-0063-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112022301


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moteki", 
        "givenName": "Nobuhiro", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo University of Science", 
          "id": "https://www.grid.ac/institutes/grid.143643.7", 
          "name": [
            "Department of Physics, Faculty of Science Division I, Tokyo University of Science, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mori", 
        "givenName": "Tatsuhiro", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsui", 
        "givenName": "Hitoshi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan", 
            "Institute for Advanced Research, Nagoya University, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ohata", 
        "givenName": "Sho", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jqsrt.2016.01.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000194205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02786826.2016.1146402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002198847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2015jd023999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002841165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2002jd002911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005139397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2013jd020655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005256752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jaerosci.2009.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005704380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep34113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005989153", 
          "https://doi.org/10.1038/srep34113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2012jd018446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007429026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2001jd000483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010052340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1994)051<1823:tmapoe>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010135925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-7-1961-2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010257840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02786826.2016.1147644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010448554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1992)049<2325:pocgod>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018634486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-6-5225-2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019182010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/027868200410840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021200998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-14-12465-2014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021244827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1247490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023210441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-10-1511-2010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025174473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-10-5685-2010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025618339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2010jd015565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027054049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-9-4131-2009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029280688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-10-7017-2010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030365634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1985)042<0583:atsotw>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032385825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2011jd016025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032422772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2011jd017324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032487043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-10-6195-2010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033685168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jaerosci.2010.02.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036694186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/027868290903907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039899214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-15-3173-2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040125410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-13-1853-2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044570768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/1999jd901161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044672390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02786826.2010.484450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044979347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2015jd024153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050197613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2014jd022669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050445491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2001jd900206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050614338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosres.2010.05.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051035295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0477(1997)078<2179:spiroc>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051327776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2011ms000074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051456468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosres.2010.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051919965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.882420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058127897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1988)045<1651:votsic>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063422001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-15-10309-2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072651855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-16-2221-2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072652561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-16-3077-2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072652645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/gmd-4-137-2011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072670023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/gmd-5-369-2012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072670141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/gmd-5-709-2012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072670163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/gmd-6-263-2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072670286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2016jd025843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084006571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms15329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085419178", 
          "https://doi.org/10.1038/ncomms15329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-17-6003-2017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085420369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2017ms000937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090743792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2017ms000936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090745536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-03379-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101298939", 
          "https://doi.org/10.1038/s41467-018-03379-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-03379-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101298939", 
          "https://doi.org/10.1038/s41467-018-03379-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-03379-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101298939", 
          "https://doi.org/10.1038/s41467-018-03379-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41612-018-0040-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106257235", 
          "https://doi.org/10.1038/s41612-018-0040-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Quantitative simulation of an aerosol\u2019s lifecycle by regional-scale and global-scale atmospheric models is mandatory for unbiased analysis and prediction of aerosol radiative forcing and climate change. Globally, aerosol deposition is dominated by the rainout process, which is mostly triggered by activation of aerosols to liquid droplets in supersaturated domains of precipitating clouds. However, the actual environmental supersaturation value that aerosols experience in precipitating clouds is difficult for models to predict, and it has never been constrained by observations; as a result, there is large uncertainty in atmospheric aerosol simulations. Here, by a particle-tracer analysis of 37 rainfall events in East Asia, near the largest source region of anthropogenic aerosols in the northern hemisphere, we observed that the environmental supersaturation actually experienced by the removed aerosols in precipitating clouds averaged 0.08 \u00b1 0.03% and ranged from 0.03 to 0.2%. Simulations by a mixing-state-resolved global aerosol model showed that the simulated long-range transport efficiency and global atmospheric burden of black carbon aerosols can be changed by a factor of two or three as a result of a change in the environmental supersaturation in precipitating clouds within just 0.08 \u00b1 0.03%. This result is attributable to the fact that the sensitivity of an aerosol\u2019s rainout efficiency to environmental supersaturation is higher for the less-aged black carbon concentrated near source regions. Our results suggest that observational constraints of environmental supersaturation in precipitating clouds, particularly near source regions, are of fundamental importance for accurate simulation of the atmospheric burden of black carbon and other aerosols. A delicate balance determines whether or not precipitation will generate the rainout, or removal, of atmospheric aerosols. The process is critical for climate and human health, but is only approximately simulated in most models. A multi-institution team led by Nobuhiro Moteki from the University of Tokyo has quantified the cloud supersaturation conditions that are required to generate \u2018nucleation scavenging\u2019, the mechanism ultimately leading to aerosol rainout. By measuring black carbon aerosols in surface air before convective precipitation and comparing it to aerosols within the precipitation itself, the team established that rainout occurred with supersaturation of about 0.08%. The threshold, however, was lower for hydrophilic, older aerosols and higher for hydrophobic, younger aerosols. Using a global aerosol model, the research shows that the high threshold in young aerosols reduces rainout near emission sources and enhances atmospheric transport of aerosols to distant regions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41612-019-0063-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5878347", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6535841", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5904303", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6822630", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5862251", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5877400", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1290454", 
        "issn": [
          "2397-3722"
        ], 
        "name": "npj Climate and Atmospheric Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Observational constraint of in-cloud supersaturation for simulations of aerosol rainout in atmospheric models", 
    "pagination": "6", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "692558ca019ad7d7fab04b80f79f23cf15d935a48417a7004bd9363832f15a56"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41612-019-0063-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112022301"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41612-019-0063-y", 
      "https://app.dimensions.ai/details/publication/pub.1112022301"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000332_0000000332/records_121942_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41612-019-0063-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41612-019-0063-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41612-019-0063-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41612-019-0063-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41612-019-0063-y'


 

This table displays all metadata directly associated to this object as RDF triples.

266 TRIPLES      21 PREDICATES      82 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41612-019-0063-y schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N057849db80eb41838fd8f7a4f18595ee
4 schema:citation sg:pub.10.1038/ncomms15329
5 sg:pub.10.1038/s41467-018-03379-6
6 sg:pub.10.1038/s41612-018-0040-x
7 sg:pub.10.1038/srep34113
8 https://doi.org/10.1002/2013jd020655
9 https://doi.org/10.1002/2014jd022669
10 https://doi.org/10.1002/2015jd023999
11 https://doi.org/10.1002/2015jd024153
12 https://doi.org/10.1002/2016jd025843
13 https://doi.org/10.1002/2017ms000936
14 https://doi.org/10.1002/2017ms000937
15 https://doi.org/10.1016/j.atmosres.2010.05.003
16 https://doi.org/10.1016/j.atmosres.2010.05.008
17 https://doi.org/10.1016/j.jaerosci.2009.08.009
18 https://doi.org/10.1016/j.jaerosci.2010.02.013
19 https://doi.org/10.1016/j.jqsrt.2016.01.025
20 https://doi.org/10.1029/1999jd901161
21 https://doi.org/10.1029/2001jd000483
22 https://doi.org/10.1029/2001jd900206
23 https://doi.org/10.1029/2002jd002911
24 https://doi.org/10.1029/2010jd015565
25 https://doi.org/10.1029/2011jd016025
26 https://doi.org/10.1029/2011jd017324
27 https://doi.org/10.1029/2011ms000074
28 https://doi.org/10.1029/2012jd018446
29 https://doi.org/10.1063/1.882420
30 https://doi.org/10.1080/027868200410840
31 https://doi.org/10.1080/02786826.2010.484450
32 https://doi.org/10.1080/02786826.2016.1146402
33 https://doi.org/10.1080/02786826.2016.1147644
34 https://doi.org/10.1080/027868290903907
35 https://doi.org/10.1126/science.1247490
36 https://doi.org/10.1175/1520-0469(1985)042<0583:atsotw>2.0.co;2
37 https://doi.org/10.1175/1520-0469(1988)045<1651:votsic>2.0.co;2
38 https://doi.org/10.1175/1520-0469(1992)049<2325:pocgod>2.0.co;2
39 https://doi.org/10.1175/1520-0469(1994)051<1823:tmapoe>2.0.co;2
40 https://doi.org/10.1175/1520-0477(1997)078<2179:spiroc>2.0.co;2
41 https://doi.org/10.5194/acp-10-1511-2010
42 https://doi.org/10.5194/acp-10-5685-2010
43 https://doi.org/10.5194/acp-10-6195-2010
44 https://doi.org/10.5194/acp-10-7017-2010
45 https://doi.org/10.5194/acp-13-1853-2013
46 https://doi.org/10.5194/acp-14-12465-2014
47 https://doi.org/10.5194/acp-15-10309-2015
48 https://doi.org/10.5194/acp-15-3173-2015
49 https://doi.org/10.5194/acp-16-2221-2016
50 https://doi.org/10.5194/acp-16-3077-2016
51 https://doi.org/10.5194/acp-17-6003-2017
52 https://doi.org/10.5194/acp-6-5225-2006
53 https://doi.org/10.5194/acp-7-1961-2007
54 https://doi.org/10.5194/acp-9-4131-2009
55 https://doi.org/10.5194/gmd-4-137-2011
56 https://doi.org/10.5194/gmd-5-369-2012
57 https://doi.org/10.5194/gmd-5-709-2012
58 https://doi.org/10.5194/gmd-6-263-2013
59 schema:datePublished 2019-12
60 schema:datePublishedReg 2019-12-01
61 schema:description Quantitative simulation of an aerosol’s lifecycle by regional-scale and global-scale atmospheric models is mandatory for unbiased analysis and prediction of aerosol radiative forcing and climate change. Globally, aerosol deposition is dominated by the rainout process, which is mostly triggered by activation of aerosols to liquid droplets in supersaturated domains of precipitating clouds. However, the actual environmental supersaturation value that aerosols experience in precipitating clouds is difficult for models to predict, and it has never been constrained by observations; as a result, there is large uncertainty in atmospheric aerosol simulations. Here, by a particle-tracer analysis of 37 rainfall events in East Asia, near the largest source region of anthropogenic aerosols in the northern hemisphere, we observed that the environmental supersaturation actually experienced by the removed aerosols in precipitating clouds averaged 0.08 ± 0.03% and ranged from 0.03 to 0.2%. Simulations by a mixing-state-resolved global aerosol model showed that the simulated long-range transport efficiency and global atmospheric burden of black carbon aerosols can be changed by a factor of two or three as a result of a change in the environmental supersaturation in precipitating clouds within just 0.08 ± 0.03%. This result is attributable to the fact that the sensitivity of an aerosol’s rainout efficiency to environmental supersaturation is higher for the less-aged black carbon concentrated near source regions. Our results suggest that observational constraints of environmental supersaturation in precipitating clouds, particularly near source regions, are of fundamental importance for accurate simulation of the atmospheric burden of black carbon and other aerosols. A delicate balance determines whether or not precipitation will generate the rainout, or removal, of atmospheric aerosols. The process is critical for climate and human health, but is only approximately simulated in most models. A multi-institution team led by Nobuhiro Moteki from the University of Tokyo has quantified the cloud supersaturation conditions that are required to generate ‘nucleation scavenging’, the mechanism ultimately leading to aerosol rainout. By measuring black carbon aerosols in surface air before convective precipitation and comparing it to aerosols within the precipitation itself, the team established that rainout occurred with supersaturation of about 0.08%. The threshold, however, was lower for hydrophilic, older aerosols and higher for hydrophobic, younger aerosols. Using a global aerosol model, the research shows that the high threshold in young aerosols reduces rainout near emission sources and enhances atmospheric transport of aerosols to distant regions.
62 schema:genre research_article
63 schema:inLanguage en
64 schema:isAccessibleForFree false
65 schema:isPartOf N200cd2212b354751b61057c100a00d87
66 Nf2ae76df504c4605a923d22b829e8ae1
67 sg:journal.1290454
68 schema:name Observational constraint of in-cloud supersaturation for simulations of aerosol rainout in atmospheric models
69 schema:pagination 6
70 schema:productId N09ad8286d8744aca90bb0041c4bc9eb3
71 N124ab32de9334114973a4c9f1f0d8d95
72 Na48ff641b1e542d493455f3a4e42e176
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112022301
74 https://doi.org/10.1038/s41612-019-0063-y
75 schema:sdDatePublished 2019-04-11T09:03
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher Nc5ce08efa4364971b196f48824f0fb1d
78 schema:url https://www.nature.com/articles/s41612-019-0063-y
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N057849db80eb41838fd8f7a4f18595ee rdf:first N26b51e40b7754b01b59d1cf88b6102fc
83 rdf:rest N33b91027d111483d95fe54f16360c1f4
84 N09ad8286d8744aca90bb0041c4bc9eb3 schema:name doi
85 schema:value 10.1038/s41612-019-0063-y
86 rdf:type schema:PropertyValue
87 N11a0d32753dc4c89855da58128d56f16 rdf:first N76ff2ef459ca42af9a7b670126b0ac84
88 rdf:rest N1a93df05e5a8435dbde39d70c350e481
89 N124ab32de9334114973a4c9f1f0d8d95 schema:name readcube_id
90 schema:value 692558ca019ad7d7fab04b80f79f23cf15d935a48417a7004bd9363832f15a56
91 rdf:type schema:PropertyValue
92 N1a93df05e5a8435dbde39d70c350e481 rdf:first Nd94ac534f62f442ba0a8fa9f6ca73b10
93 rdf:rest rdf:nil
94 N200cd2212b354751b61057c100a00d87 schema:issueNumber 1
95 rdf:type schema:PublicationIssue
96 N26b51e40b7754b01b59d1cf88b6102fc schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
97 schema:familyName Moteki
98 schema:givenName Nobuhiro
99 rdf:type schema:Person
100 N33b91027d111483d95fe54f16360c1f4 rdf:first Nac972400c1b54ced921a3f60f24685f6
101 rdf:rest N11a0d32753dc4c89855da58128d56f16
102 N76ff2ef459ca42af9a7b670126b0ac84 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
103 schema:familyName Matsui
104 schema:givenName Hitoshi
105 rdf:type schema:Person
106 Na48ff641b1e542d493455f3a4e42e176 schema:name dimensions_id
107 schema:value pub.1112022301
108 rdf:type schema:PropertyValue
109 Nac972400c1b54ced921a3f60f24685f6 schema:affiliation https://www.grid.ac/institutes/grid.143643.7
110 schema:familyName Mori
111 schema:givenName Tatsuhiro
112 rdf:type schema:Person
113 Nc5ce08efa4364971b196f48824f0fb1d schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 Nd94ac534f62f442ba0a8fa9f6ca73b10 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
116 schema:familyName Ohata
117 schema:givenName Sho
118 rdf:type schema:Person
119 Nf2ae76df504c4605a923d22b829e8ae1 schema:volumeNumber 2
120 rdf:type schema:PublicationVolume
121 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
122 schema:name Earth Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
125 schema:name Atmospheric Sciences
126 rdf:type schema:DefinedTerm
127 sg:grant.5862251 http://pending.schema.org/fundedItem sg:pub.10.1038/s41612-019-0063-y
128 rdf:type schema:MonetaryGrant
129 sg:grant.5877400 http://pending.schema.org/fundedItem sg:pub.10.1038/s41612-019-0063-y
130 rdf:type schema:MonetaryGrant
131 sg:grant.5878347 http://pending.schema.org/fundedItem sg:pub.10.1038/s41612-019-0063-y
132 rdf:type schema:MonetaryGrant
133 sg:grant.5904303 http://pending.schema.org/fundedItem sg:pub.10.1038/s41612-019-0063-y
134 rdf:type schema:MonetaryGrant
135 sg:grant.6535841 http://pending.schema.org/fundedItem sg:pub.10.1038/s41612-019-0063-y
136 rdf:type schema:MonetaryGrant
137 sg:grant.6822630 http://pending.schema.org/fundedItem sg:pub.10.1038/s41612-019-0063-y
138 rdf:type schema:MonetaryGrant
139 sg:journal.1290454 schema:issn 2397-3722
140 schema:name npj Climate and Atmospheric Science
141 rdf:type schema:Periodical
142 sg:pub.10.1038/ncomms15329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085419178
143 https://doi.org/10.1038/ncomms15329
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/s41467-018-03379-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101298939
146 https://doi.org/10.1038/s41467-018-03379-6
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/s41612-018-0040-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1106257235
149 https://doi.org/10.1038/s41612-018-0040-x
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/srep34113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005989153
152 https://doi.org/10.1038/srep34113
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1002/2013jd020655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005256752
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1002/2014jd022669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050445491
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1002/2015jd023999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002841165
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1002/2015jd024153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050197613
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/2016jd025843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084006571
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/2017ms000936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090745536
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/2017ms000937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090743792
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.atmosres.2010.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051919965
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.atmosres.2010.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051035295
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.jaerosci.2009.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005704380
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.jaerosci.2010.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036694186
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.jqsrt.2016.01.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000194205
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1029/1999jd901161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044672390
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1029/2001jd000483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010052340
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1029/2001jd900206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050614338
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1029/2002jd002911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005139397
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1029/2010jd015565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027054049
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1029/2011jd016025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032422772
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1029/2011jd017324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032487043
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1029/2011ms000074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051456468
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1029/2012jd018446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007429026
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1063/1.882420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058127897
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1080/027868200410840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021200998
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1080/02786826.2010.484450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044979347
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1080/02786826.2016.1146402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002198847
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1080/02786826.2016.1147644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010448554
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1080/027868290903907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039899214
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1126/science.1247490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023210441
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1175/1520-0469(1985)042<0583:atsotw>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032385825
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1175/1520-0469(1988)045<1651:votsic>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063422001
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1175/1520-0469(1992)049<2325:pocgod>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018634486
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1175/1520-0469(1994)051<1823:tmapoe>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010135925
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1175/1520-0477(1997)078<2179:spiroc>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051327776
219 rdf:type schema:CreativeWork
220 https://doi.org/10.5194/acp-10-1511-2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025174473
221 rdf:type schema:CreativeWork
222 https://doi.org/10.5194/acp-10-5685-2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025618339
223 rdf:type schema:CreativeWork
224 https://doi.org/10.5194/acp-10-6195-2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033685168
225 rdf:type schema:CreativeWork
226 https://doi.org/10.5194/acp-10-7017-2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030365634
227 rdf:type schema:CreativeWork
228 https://doi.org/10.5194/acp-13-1853-2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044570768
229 rdf:type schema:CreativeWork
230 https://doi.org/10.5194/acp-14-12465-2014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021244827
231 rdf:type schema:CreativeWork
232 https://doi.org/10.5194/acp-15-10309-2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072651855
233 rdf:type schema:CreativeWork
234 https://doi.org/10.5194/acp-15-3173-2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040125410
235 rdf:type schema:CreativeWork
236 https://doi.org/10.5194/acp-16-2221-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072652561
237 rdf:type schema:CreativeWork
238 https://doi.org/10.5194/acp-16-3077-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072652645
239 rdf:type schema:CreativeWork
240 https://doi.org/10.5194/acp-17-6003-2017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085420369
241 rdf:type schema:CreativeWork
242 https://doi.org/10.5194/acp-6-5225-2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019182010
243 rdf:type schema:CreativeWork
244 https://doi.org/10.5194/acp-7-1961-2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010257840
245 rdf:type schema:CreativeWork
246 https://doi.org/10.5194/acp-9-4131-2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029280688
247 rdf:type schema:CreativeWork
248 https://doi.org/10.5194/gmd-4-137-2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072670023
249 rdf:type schema:CreativeWork
250 https://doi.org/10.5194/gmd-5-369-2012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072670141
251 rdf:type schema:CreativeWork
252 https://doi.org/10.5194/gmd-5-709-2012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072670163
253 rdf:type schema:CreativeWork
254 https://doi.org/10.5194/gmd-6-263-2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072670286
255 rdf:type schema:CreativeWork
256 https://www.grid.ac/institutes/grid.143643.7 schema:alternateName Tokyo University of Science
257 schema:name Department of Physics, Faculty of Science Division I, Tokyo University of Science, Tokyo, Japan
258 rdf:type schema:Organization
259 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
260 schema:name Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
261 rdf:type schema:Organization
262 https://www.grid.ac/institutes/grid.27476.30 schema:alternateName Nagoya University
263 schema:name Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
264 Institute for Advanced Research, Nagoya University, Nagoya, Japan
265 Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
266 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...