The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Frédéric Vitart, Andrew W. Robertson

ABSTRACT

The sub-seasonal to seasonal prediction project (S2S) is a 5-year project, established in 2013 by the World Weather Research Program (WWRP) and the World Climate Research Program (WCRP). This paper briefly describes the S2S project in the context of extended range prediction of extreme events. We provide evidence that S2S forecasts have the potential to predict the onset, evolution and decay of some large-scale extreme events several weeks ahead. For instance, S2S models displayed skill to predict high probabilities of extreme 2-m temperature anomalies over Russia during the worst week of the 2010 Russian heat wave up to 3 weeks in advance. In other cases, like for tropical cyclone prediction, S2S models can produce useful information on the probability of the occurrence of tropical storms within sufficiently large areas through the prediction of large-scale predictors, such as the Madden–Julian Oscillation (MJO). In future, S2S forecasts of extreme events could be integrated into a “ready-set-go” framework between seasonal and medium range forecasts, by providing an early warning of an extreme event a few weeks in advance. Finally, S2S forecasts can also be used to investigate the causality of some extreme events and we show evidence that the cold March 2013 over western Europe and North Asia was linked to a MJO event propagating over the western Pacific. More... »

PAGES

3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41612-018-0013-0

DOI

http://dx.doi.org/10.1038/s41612-018-0013-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100658091


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vitart", 
        "givenName": "Fr\u00e9d\u00e9ric", 
        "id": "sg:person.016103603413.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016103603413.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Columbia University", 
          "id": "https://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "International Research Institute for Climate and Society (IRI), Columbia University, Palisades, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Robertson", 
        "givenName": "Andrew W.", 
        "id": "sg:person.016046102137.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016046102137.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1175/bams-d-16-0017.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004447550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-20-3549-2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005315216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(2001)129<2521:sfotsu>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009435389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2010bams2816.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010378912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/mwr3204.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014593499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.2256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014794635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2010bams2853.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017918849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1997)010<0745:soivot>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020106521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2010mwr3460.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020771479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-15-0129.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020982094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009gl039089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021624888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1998)126<1306:tghpsa>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027431379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008mwr2426.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029223613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/waf-d-14-00136.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029768500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(2004)132<1917:aarmmi>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030953686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2009jas3101.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033144667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008waf2007099.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036120907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/waf-d-11-00083.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039677081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2000)013<1451:moenph>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049096073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-010-0754-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049534314", 
          "https://doi.org/10.1007/s00382-010-0754-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2010mwr3343.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050909299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature.2014.16250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056447958", 
          "https://doi.org/10.1038/nature.2014.16250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2151/jmsj1965.64.1_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084901856"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The sub-seasonal to seasonal prediction project (S2S) is a 5-year project, established in 2013 by the World Weather Research Program (WWRP) and the World Climate Research Program (WCRP). This paper briefly describes the S2S project in the context of extended range prediction of extreme events. We provide evidence that S2S forecasts have the potential to predict the onset, evolution and decay of some large-scale extreme events several weeks ahead. For instance, S2S models displayed skill to predict high probabilities of extreme 2-m temperature anomalies over Russia during the worst week of the 2010 Russian heat wave up to 3 weeks in advance. In other cases, like for tropical cyclone prediction, S2S models can produce useful information on the probability of the occurrence of tropical storms within sufficiently large areas through the prediction of large-scale predictors, such as the Madden\u2013Julian Oscillation (MJO). In future, S2S forecasts of extreme events could be integrated into a \u201cready-set-go\u201d framework between seasonal and medium range forecasts, by providing an early warning of an extreme event a few weeks in advance. Finally, S2S forecasts can also be used to investigate the causality of some extreme events and we show evidence that the cold March 2013 over western Europe and North Asia was linked to a MJO event propagating over the western Pacific.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41612-018-0013-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5499232", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1290454", 
        "issn": [
          "2397-3722"
        ], 
        "name": "npj Climate and Atmospheric Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events", 
    "pagination": "3", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "197e316d8bc44f32800d487614dd4fe45bc5cfd3f97b8e7a86eff6559e83eb01"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41612-018-0013-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100658091"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41612-018-0013-0", 
      "https://app.dimensions.ai/details/publication/pub.1100658091"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000357_0000000357/records_99319_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41612-018-0013-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41612-018-0013-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41612-018-0013-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41612-018-0013-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41612-018-0013-0'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41612-018-0013-0 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N9f89237e96294ae695c142e75db643f4
4 schema:citation sg:pub.10.1007/s00382-010-0754-x
5 sg:pub.10.1038/nature.2014.16250
6 https://doi.org/10.1002/qj.2256
7 https://doi.org/10.1029/2009gl039089
8 https://doi.org/10.1175/1520-0442(1997)010<0745:soivot>2.0.co;2
9 https://doi.org/10.1175/1520-0442(2000)013<1451:moenph>2.0.co;2
10 https://doi.org/10.1175/1520-0493(1998)126<1306:tghpsa>2.0.co;2
11 https://doi.org/10.1175/1520-0493(2001)129<2521:sfotsu>2.0.co;2
12 https://doi.org/10.1175/1520-0493(2004)132<1917:aarmmi>2.0.co;2
13 https://doi.org/10.1175/2008mwr2426.1
14 https://doi.org/10.1175/2008waf2007099.1
15 https://doi.org/10.1175/2009jas3101.1
16 https://doi.org/10.1175/2010bams2816.1
17 https://doi.org/10.1175/2010bams2853.1
18 https://doi.org/10.1175/2010mwr3343.1
19 https://doi.org/10.1175/2010mwr3460.1
20 https://doi.org/10.1175/bams-d-16-0017.1
21 https://doi.org/10.1175/jcli-d-15-0129.1
22 https://doi.org/10.1175/mwr3204.1
23 https://doi.org/10.1175/waf-d-11-00083.1
24 https://doi.org/10.1175/waf-d-14-00136.1
25 https://doi.org/10.2151/jmsj1965.64.1_17
26 https://doi.org/10.5194/hess-20-3549-2016
27 schema:datePublished 2018-12
28 schema:datePublishedReg 2018-12-01
29 schema:description The sub-seasonal to seasonal prediction project (S2S) is a 5-year project, established in 2013 by the World Weather Research Program (WWRP) and the World Climate Research Program (WCRP). This paper briefly describes the S2S project in the context of extended range prediction of extreme events. We provide evidence that S2S forecasts have the potential to predict the onset, evolution and decay of some large-scale extreme events several weeks ahead. For instance, S2S models displayed skill to predict high probabilities of extreme 2-m temperature anomalies over Russia during the worst week of the 2010 Russian heat wave up to 3 weeks in advance. In other cases, like for tropical cyclone prediction, S2S models can produce useful information on the probability of the occurrence of tropical storms within sufficiently large areas through the prediction of large-scale predictors, such as the Madden–Julian Oscillation (MJO). In future, S2S forecasts of extreme events could be integrated into a “ready-set-go” framework between seasonal and medium range forecasts, by providing an early warning of an extreme event a few weeks in advance. Finally, S2S forecasts can also be used to investigate the causality of some extreme events and we show evidence that the cold March 2013 over western Europe and North Asia was linked to a MJO event propagating over the western Pacific.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N42e1ba03516543b8897adb33052b7355
34 Na350c5d5009e4b1684aab82961863611
35 sg:journal.1290454
36 schema:name The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events
37 schema:pagination 3
38 schema:productId N253f66fd15a94d939fe168a6b17e638a
39 N2b3b30dae6154e8789e2a40b0f14934e
40 Ne43e8d093f844945b18b0396f9e36b56
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100658091
42 https://doi.org/10.1038/s41612-018-0013-0
43 schema:sdDatePublished 2019-04-11T11:31
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N414c1bed6eed49d0ae830873986ba869
46 schema:url https://www.nature.com/articles/s41612-018-0013-0
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N253f66fd15a94d939fe168a6b17e638a schema:name readcube_id
51 schema:value 197e316d8bc44f32800d487614dd4fe45bc5cfd3f97b8e7a86eff6559e83eb01
52 rdf:type schema:PropertyValue
53 N2b3b30dae6154e8789e2a40b0f14934e schema:name doi
54 schema:value 10.1038/s41612-018-0013-0
55 rdf:type schema:PropertyValue
56 N414c1bed6eed49d0ae830873986ba869 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N42e1ba03516543b8897adb33052b7355 schema:issueNumber 1
59 rdf:type schema:PublicationIssue
60 N72b0cac45b4b4341a3ad85032d37e134 rdf:first sg:person.016046102137.15
61 rdf:rest rdf:nil
62 N9f89237e96294ae695c142e75db643f4 rdf:first sg:person.016103603413.15
63 rdf:rest N72b0cac45b4b4341a3ad85032d37e134
64 Na350c5d5009e4b1684aab82961863611 schema:volumeNumber 1
65 rdf:type schema:PublicationVolume
66 Ne43e8d093f844945b18b0396f9e36b56 schema:name dimensions_id
67 schema:value pub.1100658091
68 rdf:type schema:PropertyValue
69 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
70 schema:name Earth Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
73 schema:name Atmospheric Sciences
74 rdf:type schema:DefinedTerm
75 sg:grant.5499232 http://pending.schema.org/fundedItem sg:pub.10.1038/s41612-018-0013-0
76 rdf:type schema:MonetaryGrant
77 sg:journal.1290454 schema:issn 2397-3722
78 schema:name npj Climate and Atmospheric Science
79 rdf:type schema:Periodical
80 sg:person.016046102137.15 schema:affiliation https://www.grid.ac/institutes/grid.21729.3f
81 schema:familyName Robertson
82 schema:givenName Andrew W.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016046102137.15
84 rdf:type schema:Person
85 sg:person.016103603413.15 schema:affiliation https://www.grid.ac/institutes/grid.42781.38
86 schema:familyName Vitart
87 schema:givenName Frédéric
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016103603413.15
89 rdf:type schema:Person
90 sg:pub.10.1007/s00382-010-0754-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049534314
91 https://doi.org/10.1007/s00382-010-0754-x
92 rdf:type schema:CreativeWork
93 sg:pub.10.1038/nature.2014.16250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056447958
94 https://doi.org/10.1038/nature.2014.16250
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1002/qj.2256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014794635
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1029/2009gl039089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021624888
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1175/1520-0442(1997)010<0745:soivot>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020106521
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1175/1520-0442(2000)013<1451:moenph>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049096073
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1175/1520-0493(1998)126<1306:tghpsa>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027431379
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1175/1520-0493(2001)129<2521:sfotsu>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009435389
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1175/1520-0493(2004)132<1917:aarmmi>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030953686
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1175/2008mwr2426.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029223613
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1175/2008waf2007099.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036120907
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1175/2009jas3101.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033144667
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1175/2010bams2816.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010378912
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1175/2010bams2853.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017918849
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1175/2010mwr3343.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050909299
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1175/2010mwr3460.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020771479
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1175/bams-d-16-0017.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004447550
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1175/jcli-d-15-0129.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020982094
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1175/mwr3204.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014593499
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1175/waf-d-11-00083.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039677081
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1175/waf-d-14-00136.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029768500
133 rdf:type schema:CreativeWork
134 https://doi.org/10.2151/jmsj1965.64.1_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084901856
135 rdf:type schema:CreativeWork
136 https://doi.org/10.5194/hess-20-3549-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005315216
137 rdf:type schema:CreativeWork
138 https://www.grid.ac/institutes/grid.21729.3f schema:alternateName Columbia University
139 schema:name International Research Institute for Climate and Society (IRI), Columbia University, Palisades, NY, USA
140 rdf:type schema:Organization
141 https://www.grid.ac/institutes/grid.42781.38 schema:alternateName European Centre for Medium-Range Weather Forecasts
142 schema:name European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...