Generalizing predictions to unseen sequencing profiles via deep generative models View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-05-03

AUTHORS

Min Oh, Liqing Zhang

ABSTRACT

Predictive models trained on sequencing profiles often fail to achieve expected performance when externally validated on unseen profiles. While many factors such as batch effects, small data sets, and technical errors contribute to the gap between source and unseen data distributions, it is a challenging problem to generalize the predictive models across studies without any prior knowledge of the unseen data distribution. Here, this study proposes DeepBioGen, a sequencing profile augmentation procedure that characterizes visual patterns of sequencing profiles, generates realistic profiles based on a deep generative model capturing the patterns, and generalizes the subsequent classifiers. DeepBioGen outperforms other methods in terms of enhancing the generalizability of the prediction models on unseen data. The generalized classifiers surpass the state-of-the-art method, evaluated on RNA sequencing tumor expression profiles for anti-PD1 therapy response prediction and WGS human gut microbiome profiles for type 2 diabetes diagnosis. More... »

PAGES

7151

References to SciGraph publications

  • 2010. Adapting Visual Category Models to New Domains in COMPUTER VISION – ECCV 2010
  • 2019-08-06. DeepInsight: A methodology to transform a non-image data to an image for convolution neural network architecture in SCIENTIFIC REPORTS
  • 2014-01-27. Policy: NIH plans to enhance reproducibility in NATURE
  • 2019-01-09. Occurrence of the potent mutagens 2- nitrobenzanthrone and 3-nitrobenzanthrone in fine airborne particles in SCIENTIFIC REPORTS
  • 2020-01-08. Re-epithelialization and immune cell behaviour in an ex vivo human skin model in SCIENTIFIC REPORTS
  • 2015-09-29. MetaPhlAn2 for enhanced metagenomic taxonomic profiling in NATURE METHODS
  • 2013-05-29. Gut metagenome in European women with normal, impaired and diabetic glucose control in NATURE
  • 2018-08-20. Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma in NATURE MEDICINE
  • 2018-09-27. Augmenting Image Classifiers Using Data Augmentation Generative Adversarial Networks in ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING – ICANN 2018
  • 1953-12. Who belongs in the family? in PSYCHOMETRIKA
  • 2020-01-09. Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks in NATURE COMMUNICATIONS
  • 2020-12-07. Increasing the reproducibility of fluid biomarker studies in neurodegenerative studies in NATURE COMMUNICATIONS
  • 2017-10-25. Biomedical Data Augmentation Using Generative Adversarial Neural Networks in ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING – ICANN 2017
  • 2006-03-02. Extremely randomized trees in MACHINE LEARNING
  • 2019-11-15. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks in SCIENTIFIC REPORTS
  • 2012-09-26. A metagenome-wide association study of gut microbiota in type 2 diabetes in NATURE
  • 2008-03-16. Genetics of gene expression and its effect on disease in NATURE
  • 2010-09-14. Tackling the widespread and critical impact of batch effects in high-throughput data in NATURE REVIEWS GENETICS
  • 2018-08-20. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response in NATURE MEDICINE
  • 2016-05-25. 1,500 scientists lift the lid on reproducibility in NATURE
  • 2018-10-07. Deep Domain Generalization via Conditional Invariant Adversarial Networks in COMPUTER VISION – ECCV 2018
  • 2020-01-07. U1 snRNP regulates cancer cell migration and invasion in vitro in NATURE COMMUNICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-022-11363-w

    DOI

    http://dx.doi.org/10.1038/s41598-022-11363-w

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1147549871

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/35504956


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Diabetes Mellitus, Type 2", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, RNA", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Computer Science, Virginia Tech, Blacksburg, VA, USA", 
              "id": "http://www.grid.ac/institutes/grid.438526.e", 
              "name": [
                "Department of Computer Science, Virginia Tech, Blacksburg, VA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Oh", 
            "givenName": "Min", 
            "id": "sg:person.014266323475.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014266323475.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science, Virginia Tech, Blacksburg, VA, USA", 
              "id": "http://www.grid.ac/institutes/grid.438526.e", 
              "name": [
                "Department of Computer Science, Virginia Tech, Blacksburg, VA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Liqing", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-15561-1_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047848527", 
              "https://doi.org/10.1007/978-3-642-15561-1_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2825", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037809833", 
              "https://doi.org/10.1038/nrg2825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-01424-7_58", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107352273", 
              "https://doi.org/10.1007/978-3-030-01424-7_58"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3589", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028162909", 
              "https://doi.org/10.1038/nmeth.3589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41591-018-0157-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106133485", 
              "https://doi.org/10.1038/s41591-018-0157-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/505612a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044453509", 
              "https://doi.org/10.1038/505612a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/533452a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010295273", 
              "https://doi.org/10.1038/533452a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002791386", 
              "https://doi.org/10.1038/nature12198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-019-52737-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122598037", 
              "https://doi.org/10.1038/s41598-019-52737-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-68612-7_71", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092344930", 
              "https://doi.org/10.1007/978-3-319-68612-7_71"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-13993-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123915232", 
              "https://doi.org/10.1038/s41467-019-13993-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11450", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004546178", 
              "https://doi.org/10.1038/nature11450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06758", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022504514", 
              "https://doi.org/10.1038/nature06758"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41591-018-0136-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106133483", 
              "https://doi.org/10.1038/s41591-018-0136-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-020-19957-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1133284935", 
              "https://doi.org/10.1038/s41467-020-19957-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-37186-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111102200", 
              "https://doi.org/10.1038/s41598-018-37186-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10994-006-6226-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007730804", 
              "https://doi.org/10.1007/s10994-006-6226-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-019-56847-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123950493", 
              "https://doi.org/10.1038/s41598-019-56847-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-14018-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123953545", 
              "https://doi.org/10.1038/s41467-019-14018-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-019-47765-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120146669", 
              "https://doi.org/10.1038/s41598-019-47765-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-01267-0_38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107463421", 
              "https://doi.org/10.1007/978-3-030-01267-0_38"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02289263", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052823670", 
              "https://doi.org/10.1007/bf02289263"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-05-03", 
        "datePublishedReg": "2022-05-03", 
        "description": "Predictive models trained on sequencing profiles often fail to achieve expected performance when externally validated on unseen profiles. While many factors such as batch effects, small data sets, and technical errors contribute to the gap between source and unseen data distributions, it is a challenging problem to generalize the predictive models across studies without any prior knowledge of the unseen data distribution. Here, this study proposes DeepBioGen, a sequencing profile augmentation procedure that characterizes visual patterns of sequencing profiles, generates realistic profiles based on a deep generative model capturing the patterns, and generalizes the subsequent classifiers. DeepBioGen outperforms other methods in terms of enhancing the generalizability of the prediction models on unseen data. The generalized classifiers surpass the state-of-the-art method, evaluated on RNA sequencing tumor expression profiles for anti-PD1 therapy response prediction and WGS human gut microbiome profiles for type 2 diabetes diagnosis.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-022-11363-w", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "keywords": [
          "type 2 diabetes diagnosis", 
          "sequencing profiles", 
          "therapy response prediction", 
          "diabetes diagnosis", 
          "augmentation procedures", 
          "tumor expression profiles", 
          "human gut", 
          "technical errors", 
          "expression profiles", 
          "predictive model", 
          "diagnosis", 
          "profile", 
          "study", 
          "response prediction", 
          "gut", 
          "visual patterns", 
          "factors", 
          "patterns", 
          "generalizability", 
          "effect", 
          "procedure", 
          "prediction model", 
          "data", 
          "model", 
          "knowledge", 
          "batch effects", 
          "method", 
          "distribution", 
          "source", 
          "terms", 
          "state", 
          "prediction", 
          "gap", 
          "data sets", 
          "challenging problem", 
          "problem", 
          "error", 
          "classifier", 
          "performance", 
          "unseen data", 
          "generalized classifier", 
          "set", 
          "prior knowledge", 
          "small data sets", 
          "data distribution", 
          "deep generative models", 
          "generative model", 
          "subsequent classifier", 
          "art methods", 
          "realistic profiles"
        ], 
        "name": "Generalizing predictions to unseen sequencing profiles via deep generative models", 
        "pagination": "7151", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1147549871"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-022-11363-w"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "35504956"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-022-11363-w", 
          "https://app.dimensions.ai/details/publication/pub.1147549871"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_931.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-022-11363-w"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-022-11363-w'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-022-11363-w'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-022-11363-w'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-022-11363-w'


     

    This table displays all metadata directly associated to this object as RDF triples.

    217 TRIPLES      22 PREDICATES      101 URIs      71 LITERALS      10 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-022-11363-w schema:about N6d5b9559fe204a608e5e0f97fcf8c407
    2 N86c3ba90f90c43c7af91acedb4e5c612
    3 Nd19ea9103c06439698d69b4bd352056e
    4 anzsrc-for:08
    5 anzsrc-for:0801
    6 schema:author N3ca48333d0c74c7d85560ca6d28ee559
    7 schema:citation sg:pub.10.1007/978-3-030-01267-0_38
    8 sg:pub.10.1007/978-3-030-01424-7_58
    9 sg:pub.10.1007/978-3-319-68612-7_71
    10 sg:pub.10.1007/978-3-642-15561-1_16
    11 sg:pub.10.1007/bf02289263
    12 sg:pub.10.1007/s10994-006-6226-1
    13 sg:pub.10.1038/505612a
    14 sg:pub.10.1038/533452a
    15 sg:pub.10.1038/nature06758
    16 sg:pub.10.1038/nature11450
    17 sg:pub.10.1038/nature12198
    18 sg:pub.10.1038/nmeth.3589
    19 sg:pub.10.1038/nrg2825
    20 sg:pub.10.1038/s41467-019-13993-7
    21 sg:pub.10.1038/s41467-019-14018-z
    22 sg:pub.10.1038/s41467-020-19957-6
    23 sg:pub.10.1038/s41591-018-0136-1
    24 sg:pub.10.1038/s41591-018-0157-9
    25 sg:pub.10.1038/s41598-018-37186-2
    26 sg:pub.10.1038/s41598-019-47765-6
    27 sg:pub.10.1038/s41598-019-52737-x
    28 sg:pub.10.1038/s41598-019-56847-4
    29 schema:datePublished 2022-05-03
    30 schema:datePublishedReg 2022-05-03
    31 schema:description Predictive models trained on sequencing profiles often fail to achieve expected performance when externally validated on unseen profiles. While many factors such as batch effects, small data sets, and technical errors contribute to the gap between source and unseen data distributions, it is a challenging problem to generalize the predictive models across studies without any prior knowledge of the unseen data distribution. Here, this study proposes DeepBioGen, a sequencing profile augmentation procedure that characterizes visual patterns of sequencing profiles, generates realistic profiles based on a deep generative model capturing the patterns, and generalizes the subsequent classifiers. DeepBioGen outperforms other methods in terms of enhancing the generalizability of the prediction models on unseen data. The generalized classifiers surpass the state-of-the-art method, evaluated on RNA sequencing tumor expression profiles for anti-PD1 therapy response prediction and WGS human gut microbiome profiles for type 2 diabetes diagnosis.
    32 schema:genre article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree true
    35 schema:isPartOf N50edf0ab8b9e4c8f8a98ad8adbce49e9
    36 N7fca29030db24539af4a3aee767fc05a
    37 sg:journal.1045337
    38 schema:keywords art methods
    39 augmentation procedures
    40 batch effects
    41 challenging problem
    42 classifier
    43 data
    44 data distribution
    45 data sets
    46 deep generative models
    47 diabetes diagnosis
    48 diagnosis
    49 distribution
    50 effect
    51 error
    52 expression profiles
    53 factors
    54 gap
    55 generalizability
    56 generalized classifier
    57 generative model
    58 gut
    59 human gut
    60 knowledge
    61 method
    62 model
    63 patterns
    64 performance
    65 prediction
    66 prediction model
    67 predictive model
    68 prior knowledge
    69 problem
    70 procedure
    71 profile
    72 realistic profiles
    73 response prediction
    74 sequencing profiles
    75 set
    76 small data sets
    77 source
    78 state
    79 study
    80 subsequent classifier
    81 technical errors
    82 terms
    83 therapy response prediction
    84 tumor expression profiles
    85 type 2 diabetes diagnosis
    86 unseen data
    87 visual patterns
    88 schema:name Generalizing predictions to unseen sequencing profiles via deep generative models
    89 schema:pagination 7151
    90 schema:productId N64b3377d991a4710b651f2a8971e3545
    91 Ne97e1be67e8f42ed9500e0b324436bae
    92 Nfdad85fd258b4d75ad36d71d18f6d3e1
    93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147549871
    94 https://doi.org/10.1038/s41598-022-11363-w
    95 schema:sdDatePublished 2022-06-01T22:23
    96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    97 schema:sdPublisher Ndd54bb2a32a142278ba9765bc10374dc
    98 schema:url https://doi.org/10.1038/s41598-022-11363-w
    99 sgo:license sg:explorer/license/
    100 sgo:sdDataset articles
    101 rdf:type schema:ScholarlyArticle
    102 N0ccc57498f334f14806cbab12501814d rdf:first N75906dbab2a24996ad2cb20af3455f62
    103 rdf:rest rdf:nil
    104 N3ca48333d0c74c7d85560ca6d28ee559 rdf:first sg:person.014266323475.09
    105 rdf:rest N0ccc57498f334f14806cbab12501814d
    106 N50edf0ab8b9e4c8f8a98ad8adbce49e9 schema:issueNumber 1
    107 rdf:type schema:PublicationIssue
    108 N64b3377d991a4710b651f2a8971e3545 schema:name doi
    109 schema:value 10.1038/s41598-022-11363-w
    110 rdf:type schema:PropertyValue
    111 N6d5b9559fe204a608e5e0f97fcf8c407 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Diabetes Mellitus, Type 2
    113 rdf:type schema:DefinedTerm
    114 N75906dbab2a24996ad2cb20af3455f62 schema:affiliation grid-institutes:grid.438526.e
    115 schema:familyName Zhang
    116 schema:givenName Liqing
    117 rdf:type schema:Person
    118 N7fca29030db24539af4a3aee767fc05a schema:volumeNumber 12
    119 rdf:type schema:PublicationVolume
    120 N86c3ba90f90c43c7af91acedb4e5c612 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Sequence Analysis, RNA
    122 rdf:type schema:DefinedTerm
    123 Nd19ea9103c06439698d69b4bd352056e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Humans
    125 rdf:type schema:DefinedTerm
    126 Ndd54bb2a32a142278ba9765bc10374dc schema:name Springer Nature - SN SciGraph project
    127 rdf:type schema:Organization
    128 Ne97e1be67e8f42ed9500e0b324436bae schema:name dimensions_id
    129 schema:value pub.1147549871
    130 rdf:type schema:PropertyValue
    131 Nfdad85fd258b4d75ad36d71d18f6d3e1 schema:name pubmed_id
    132 schema:value 35504956
    133 rdf:type schema:PropertyValue
    134 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    135 schema:name Information and Computing Sciences
    136 rdf:type schema:DefinedTerm
    137 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    138 schema:name Artificial Intelligence and Image Processing
    139 rdf:type schema:DefinedTerm
    140 sg:journal.1045337 schema:issn 2045-2322
    141 schema:name Scientific Reports
    142 schema:publisher Springer Nature
    143 rdf:type schema:Periodical
    144 sg:person.014266323475.09 schema:affiliation grid-institutes:grid.438526.e
    145 schema:familyName Oh
    146 schema:givenName Min
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014266323475.09
    148 rdf:type schema:Person
    149 sg:pub.10.1007/978-3-030-01267-0_38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107463421
    150 https://doi.org/10.1007/978-3-030-01267-0_38
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/978-3-030-01424-7_58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107352273
    153 https://doi.org/10.1007/978-3-030-01424-7_58
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/978-3-319-68612-7_71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092344930
    156 https://doi.org/10.1007/978-3-319-68612-7_71
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/978-3-642-15561-1_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047848527
    159 https://doi.org/10.1007/978-3-642-15561-1_16
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/bf02289263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052823670
    162 https://doi.org/10.1007/bf02289263
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/s10994-006-6226-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007730804
    165 https://doi.org/10.1007/s10994-006-6226-1
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1038/505612a schema:sameAs https://app.dimensions.ai/details/publication/pub.1044453509
    168 https://doi.org/10.1038/505612a
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/533452a schema:sameAs https://app.dimensions.ai/details/publication/pub.1010295273
    171 https://doi.org/10.1038/533452a
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1038/nature06758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022504514
    174 https://doi.org/10.1038/nature06758
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/nature11450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004546178
    177 https://doi.org/10.1038/nature11450
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/nature12198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002791386
    180 https://doi.org/10.1038/nature12198
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/nmeth.3589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028162909
    183 https://doi.org/10.1038/nmeth.3589
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/nrg2825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037809833
    186 https://doi.org/10.1038/nrg2825
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/s41467-019-13993-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123915232
    189 https://doi.org/10.1038/s41467-019-13993-7
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/s41467-019-14018-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1123953545
    192 https://doi.org/10.1038/s41467-019-14018-z
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/s41467-020-19957-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1133284935
    195 https://doi.org/10.1038/s41467-020-19957-6
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/s41591-018-0136-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106133483
    198 https://doi.org/10.1038/s41591-018-0136-1
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/s41591-018-0157-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106133485
    201 https://doi.org/10.1038/s41591-018-0157-9
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/s41598-018-37186-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111102200
    204 https://doi.org/10.1038/s41598-018-37186-2
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/s41598-019-47765-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120146669
    207 https://doi.org/10.1038/s41598-019-47765-6
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/s41598-019-52737-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1122598037
    210 https://doi.org/10.1038/s41598-019-52737-x
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/s41598-019-56847-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123950493
    213 https://doi.org/10.1038/s41598-019-56847-4
    214 rdf:type schema:CreativeWork
    215 grid-institutes:grid.438526.e schema:alternateName Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
    216 schema:name Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
    217 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...