Ontology type: schema:ScholarlyArticle Open Access: True
2022-05-03
AUTHORSSuh Young Kim, Young Joo Suh, Hye-Jeong Lee, Young Jin Kim
ABSTRACTIt is unknown whether the thinner slice reconstruction has added value relative to 3 mm reconstructions in predicting major adverse cardiac events (MACEs). This retrospective study included 550 asymptomatic individuals who underwent cardiac CT. Coronary artery calcium (CAC) scores and severity categories were assessed from 1.5 and 3 mm scans. CAC scores obtained from 1.5 and 3 mm scans were compared using Wilcoxon signed-rank tests. Cox proportional hazard models were developed to predict MACEs based on the degree of coronary artery stenosis on coronary CT angiography and the presence of CAC on both scans. Model performances were compared using the time-dependent ROC curve and integrated area under the curve (iAUC) methods. The CAC scores obtained from 1.5 mm scans were significantly higher than those from 3 mm scans (median, interquartile range 4.5[0–71] vs. 0[0–48.4]; p < 0.001). Models showed no difference in predictive accuracy of the presence of CAC between 1.5 and 3 mm scans (iAUC, 0.625 vs. 0.672). In conclusion, CAC scores obtained from 1.5 mm scans are significantly higher than those from 3 mm scans, but do not provide added prognostic value relative to 3 mm scans. More... »
PAGES7198
http://scigraph.springernature.com/pub.10.1038/s41598-022-11332-3
DOIhttp://dx.doi.org/10.1038/s41598-022-11332-3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1147552843
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/35504936
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Cardiorespiratory Medicine and Haematology",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Calcium",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Coronary Artery Disease",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Electrocardiography",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Retrospective Studies",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Tomography, X-Ray Computed",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Radiology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Korea",
"id": "http://www.grid.ac/institutes/grid.415292.9",
"name": [
"Department of Medicine, College of Medicine, Yonsei University Graduate School, Seoul, Korea",
"Department of Radiology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Korea"
],
"type": "Organization"
},
"familyName": "Kim",
"givenName": "Suh Young",
"id": "sg:person.013300621163.46",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013300621163.46"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea",
"id": "http://www.grid.ac/institutes/grid.415562.1",
"name": [
"Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea"
],
"type": "Organization"
},
"familyName": "Suh",
"givenName": "Young Joo",
"id": "sg:person.015766550713.45",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015766550713.45"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea",
"id": "http://www.grid.ac/institutes/grid.415562.1",
"name": [
"Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea"
],
"type": "Organization"
},
"familyName": "Lee",
"givenName": "Hye-Jeong",
"id": "sg:person.01160231265.97",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160231265.97"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea",
"id": "http://www.grid.ac/institutes/grid.415562.1",
"name": [
"Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea"
],
"type": "Organization"
},
"familyName": "Kim",
"givenName": "Young Jin",
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s00330-008-1095-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006002800",
"https://doi.org/10.1007/s00330-008-1095-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00330-006-0332-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011602060",
"https://doi.org/10.1007/s00330-006-0332-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10554-010-9581-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015272796",
"https://doi.org/10.1007/s10554-010-9581-8"
],
"type": "CreativeWork"
}
],
"datePublished": "2022-05-03",
"datePublishedReg": "2022-05-03",
"description": "It is unknown whether the thinner slice reconstruction has added value relative to 3\u00a0mm reconstructions in predicting major adverse cardiac events (MACEs). This retrospective study included 550 asymptomatic individuals who underwent cardiac CT. Coronary artery calcium (CAC) scores and severity categories were assessed from 1.5 and 3\u00a0mm scans. CAC scores obtained from 1.5 and 3\u00a0mm scans were compared using Wilcoxon signed-rank tests. Cox proportional hazard models were developed to predict MACEs based on the degree of coronary artery stenosis on coronary CT angiography and the presence of CAC on both scans. Model performances were compared using the time-dependent ROC curve and integrated area under the curve (iAUC) methods. The CAC scores obtained from 1.5\u00a0mm scans were significantly higher than those from 3\u00a0mm scans (median, interquartile range 4.5[0\u201371] vs. 0[0\u201348.4]; p\u2009<\u20090.001). Models showed no difference in predictive accuracy of the presence of CAC between 1.5 and 3\u00a0mm scans (iAUC, 0.625 vs. 0.672). In conclusion, CAC scores obtained from 1.5\u00a0mm scans are significantly higher than those from 3\u00a0mm scans, but do not provide added prognostic value relative to 3\u00a0mm scans.",
"genre": "article",
"id": "sg:pub.10.1038/s41598-022-11332-3",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1045337",
"issn": [
"2045-2322"
],
"name": "Scientific Reports",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "12"
}
],
"keywords": [
"major adverse cardiac events",
"coronary artery calcium score",
"artery calcium score",
"presence of CAC",
"CAC score",
"calcium score",
"prognostic value",
"asymptomatic individuals",
"adverse cardiac events",
"coronary artery stenosis",
"proportional hazards model",
"coronary CT angiography",
"time-dependent ROC curves",
"thin slice reconstruction",
"Wilcoxon signed-rank test",
"cardiac events",
"artery stenosis",
"retrospective study",
"signed-rank test",
"tomography scan",
"CT angiography",
"hazards model",
"cardiac CT",
"severity categories",
"ROC curve",
"scans",
"scores",
"predictive accuracy",
"stenosis",
"angiography",
"integrated area",
"individuals",
"CT",
"electrocardiogram",
"slice reconstruction",
"CAC",
"conclusion",
"reconstruction",
"presence",
"differences",
"study",
"events",
"test",
"values",
"categories",
"degree",
"curves",
"area",
"model",
"curve method",
"method",
"model performance",
"accuracy",
"performance"
],
"name": "Prognostic value of coronary artery calcium scores from 1.5 mm slice reconstructions of electrocardiogram-gated computed tomography scans in asymptomatic individuals",
"pagination": "7198",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1147552843"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/s41598-022-11332-3"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"35504936"
]
}
],
"sameAs": [
"https://doi.org/10.1038/s41598-022-11332-3",
"https://app.dimensions.ai/details/publication/pub.1147552843"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:24",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_937.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1038/s41598-022-11332-3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-022-11332-3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-022-11332-3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-022-11332-3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-022-11332-3'
This table displays all metadata directly associated to this object as RDF triples.
175 TRIPLES
22 PREDICATES
89 URIs
78 LITERALS
13 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1038/s41598-022-11332-3 | schema:about | N370efab1d2784fa1bff65f306ad7bafb |
2 | ″ | ″ | N4c27151f708b40b6a5af1d6cd1d7fb94 |
3 | ″ | ″ | N907b7ebdf9a04e658143821a8e17d94a |
4 | ″ | ″ | Na0bb4764d341424d8d429c3b9b157009 |
5 | ″ | ″ | Nb74f7db0def043c2bdf950645b248234 |
6 | ″ | ″ | Nf737ff3fd2674187b70727269c670c74 |
7 | ″ | ″ | anzsrc-for:11 |
8 | ″ | ″ | anzsrc-for:1102 |
9 | ″ | schema:author | Nf18fa42ebe5f414cadcb38c0f2ce2e44 |
10 | ″ | schema:citation | sg:pub.10.1007/s00330-006-0332-0 |
11 | ″ | ″ | sg:pub.10.1007/s00330-008-1095-6 |
12 | ″ | ″ | sg:pub.10.1007/s10554-010-9581-8 |
13 | ″ | schema:datePublished | 2022-05-03 |
14 | ″ | schema:datePublishedReg | 2022-05-03 |
15 | ″ | schema:description | It is unknown whether the thinner slice reconstruction has added value relative to 3 mm reconstructions in predicting major adverse cardiac events (MACEs). This retrospective study included 550 asymptomatic individuals who underwent cardiac CT. Coronary artery calcium (CAC) scores and severity categories were assessed from 1.5 and 3 mm scans. CAC scores obtained from 1.5 and 3 mm scans were compared using Wilcoxon signed-rank tests. Cox proportional hazard models were developed to predict MACEs based on the degree of coronary artery stenosis on coronary CT angiography and the presence of CAC on both scans. Model performances were compared using the time-dependent ROC curve and integrated area under the curve (iAUC) methods. The CAC scores obtained from 1.5 mm scans were significantly higher than those from 3 mm scans (median, interquartile range 4.5[0–71] vs. 0[0–48.4]; p < 0.001). Models showed no difference in predictive accuracy of the presence of CAC between 1.5 and 3 mm scans (iAUC, 0.625 vs. 0.672). In conclusion, CAC scores obtained from 1.5 mm scans are significantly higher than those from 3 mm scans, but do not provide added prognostic value relative to 3 mm scans. |
16 | ″ | schema:genre | article |
17 | ″ | schema:inLanguage | en |
18 | ″ | schema:isAccessibleForFree | true |
19 | ″ | schema:isPartOf | N20c6321cb51343128c6cb72b17229d62 |
20 | ″ | ″ | N5af3d922e6724199b0c42eebe96911f3 |
21 | ″ | ″ | sg:journal.1045337 |
22 | ″ | schema:keywords | CAC |
23 | ″ | ″ | CAC score |
24 | ″ | ″ | CT |
25 | ″ | ″ | CT angiography |
26 | ″ | ″ | ROC curve |
27 | ″ | ″ | Wilcoxon signed-rank test |
28 | ″ | ″ | accuracy |
29 | ″ | ″ | adverse cardiac events |
30 | ″ | ″ | angiography |
31 | ″ | ″ | area |
32 | ″ | ″ | artery calcium score |
33 | ″ | ″ | artery stenosis |
34 | ″ | ″ | asymptomatic individuals |
35 | ″ | ″ | calcium score |
36 | ″ | ″ | cardiac CT |
37 | ″ | ″ | cardiac events |
38 | ″ | ″ | categories |
39 | ″ | ″ | conclusion |
40 | ″ | ″ | coronary CT angiography |
41 | ″ | ″ | coronary artery calcium score |
42 | ″ | ″ | coronary artery stenosis |
43 | ″ | ″ | curve method |
44 | ″ | ″ | curves |
45 | ″ | ″ | degree |
46 | ″ | ″ | differences |
47 | ″ | ″ | electrocardiogram |
48 | ″ | ″ | events |
49 | ″ | ″ | hazards model |
50 | ″ | ″ | individuals |
51 | ″ | ″ | integrated area |
52 | ″ | ″ | major adverse cardiac events |
53 | ″ | ″ | method |
54 | ″ | ″ | model |
55 | ″ | ″ | model performance |
56 | ″ | ″ | performance |
57 | ″ | ″ | predictive accuracy |
58 | ″ | ″ | presence |
59 | ″ | ″ | presence of CAC |
60 | ″ | ″ | prognostic value |
61 | ″ | ″ | proportional hazards model |
62 | ″ | ″ | reconstruction |
63 | ″ | ″ | retrospective study |
64 | ″ | ″ | scans |
65 | ″ | ″ | scores |
66 | ″ | ″ | severity categories |
67 | ″ | ″ | signed-rank test |
68 | ″ | ″ | slice reconstruction |
69 | ″ | ″ | stenosis |
70 | ″ | ″ | study |
71 | ″ | ″ | test |
72 | ″ | ″ | thin slice reconstruction |
73 | ″ | ″ | time-dependent ROC curves |
74 | ″ | ″ | tomography scan |
75 | ″ | ″ | values |
76 | ″ | schema:name | Prognostic value of coronary artery calcium scores from 1.5 mm slice reconstructions of electrocardiogram-gated computed tomography scans in asymptomatic individuals |
77 | ″ | schema:pagination | 7198 |
78 | ″ | schema:productId | N82076a393a2a4cfa8c59d27d298e85f1 |
79 | ″ | ″ | Na1569d3781f74fefaa7e279c94120497 |
80 | ″ | ″ | Na623bfaa74af40459c273ee978ac4ebd |
81 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1147552843 |
82 | ″ | ″ | https://doi.org/10.1038/s41598-022-11332-3 |
83 | ″ | schema:sdDatePublished | 2022-06-01T22:24 |
84 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
85 | ″ | schema:sdPublisher | N6062a02f452b465181b84404e0082d75 |
86 | ″ | schema:url | https://doi.org/10.1038/s41598-022-11332-3 |
87 | ″ | sgo:license | sg:explorer/license/ |
88 | ″ | sgo:sdDataset | articles |
89 | ″ | rdf:type | schema:ScholarlyArticle |
90 | N20c6321cb51343128c6cb72b17229d62 | schema:issueNumber | 1 |
91 | ″ | rdf:type | schema:PublicationIssue |
92 | N370efab1d2784fa1bff65f306ad7bafb | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
93 | ″ | schema:name | Retrospective Studies |
94 | ″ | rdf:type | schema:DefinedTerm |
95 | N3dcfa85841b34505b62aad47df90f3a7 | schema:affiliation | grid-institutes:grid.415562.1 |
96 | ″ | schema:familyName | Kim |
97 | ″ | schema:givenName | Young Jin |
98 | ″ | rdf:type | schema:Person |
99 | N4c27151f708b40b6a5af1d6cd1d7fb94 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
100 | ″ | schema:name | Calcium |
101 | ″ | rdf:type | schema:DefinedTerm |
102 | N5af3d922e6724199b0c42eebe96911f3 | schema:volumeNumber | 12 |
103 | ″ | rdf:type | schema:PublicationVolume |
104 | N6062a02f452b465181b84404e0082d75 | schema:name | Springer Nature - SN SciGraph project |
105 | ″ | rdf:type | schema:Organization |
106 | N6b24356759c8487c8be81facc60f7d40 | rdf:first | N3dcfa85841b34505b62aad47df90f3a7 |
107 | ″ | rdf:rest | rdf:nil |
108 | N82076a393a2a4cfa8c59d27d298e85f1 | schema:name | dimensions_id |
109 | ″ | schema:value | pub.1147552843 |
110 | ″ | rdf:type | schema:PropertyValue |
111 | N907b7ebdf9a04e658143821a8e17d94a | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
112 | ″ | schema:name | Coronary Artery Disease |
113 | ″ | rdf:type | schema:DefinedTerm |
114 | Na0bb4764d341424d8d429c3b9b157009 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
115 | ″ | schema:name | Electrocardiography |
116 | ″ | rdf:type | schema:DefinedTerm |
117 | Na1569d3781f74fefaa7e279c94120497 | schema:name | doi |
118 | ″ | schema:value | 10.1038/s41598-022-11332-3 |
119 | ″ | rdf:type | schema:PropertyValue |
120 | Na623bfaa74af40459c273ee978ac4ebd | schema:name | pubmed_id |
121 | ″ | schema:value | 35504936 |
122 | ″ | rdf:type | schema:PropertyValue |
123 | Na9bab64756554a3a9b1933a18f86495e | rdf:first | sg:person.01160231265.97 |
124 | ″ | rdf:rest | N6b24356759c8487c8be81facc60f7d40 |
125 | Nb74f7db0def043c2bdf950645b248234 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
126 | ″ | schema:name | Humans |
127 | ″ | rdf:type | schema:DefinedTerm |
128 | Nf18fa42ebe5f414cadcb38c0f2ce2e44 | rdf:first | sg:person.013300621163.46 |
129 | ″ | rdf:rest | Nf88a24dcf0944a75a4be51f635dafede |
130 | Nf737ff3fd2674187b70727269c670c74 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
131 | ″ | schema:name | Tomography, X-Ray Computed |
132 | ″ | rdf:type | schema:DefinedTerm |
133 | Nf88a24dcf0944a75a4be51f635dafede | rdf:first | sg:person.015766550713.45 |
134 | ″ | rdf:rest | Na9bab64756554a3a9b1933a18f86495e |
135 | anzsrc-for:11 | schema:inDefinedTermSet | anzsrc-for: |
136 | ″ | schema:name | Medical and Health Sciences |
137 | ″ | rdf:type | schema:DefinedTerm |
138 | anzsrc-for:1102 | schema:inDefinedTermSet | anzsrc-for: |
139 | ″ | schema:name | Cardiorespiratory Medicine and Haematology |
140 | ″ | rdf:type | schema:DefinedTerm |
141 | sg:journal.1045337 | schema:issn | 2045-2322 |
142 | ″ | schema:name | Scientific Reports |
143 | ″ | schema:publisher | Springer Nature |
144 | ″ | rdf:type | schema:Periodical |
145 | sg:person.01160231265.97 | schema:affiliation | grid-institutes:grid.415562.1 |
146 | ″ | schema:familyName | Lee |
147 | ″ | schema:givenName | Hye-Jeong |
148 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160231265.97 |
149 | ″ | rdf:type | schema:Person |
150 | sg:person.013300621163.46 | schema:affiliation | grid-institutes:grid.415292.9 |
151 | ″ | schema:familyName | Kim |
152 | ″ | schema:givenName | Suh Young |
153 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013300621163.46 |
154 | ″ | rdf:type | schema:Person |
155 | sg:person.015766550713.45 | schema:affiliation | grid-institutes:grid.415562.1 |
156 | ″ | schema:familyName | Suh |
157 | ″ | schema:givenName | Young Joo |
158 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015766550713.45 |
159 | ″ | rdf:type | schema:Person |
160 | sg:pub.10.1007/s00330-006-0332-0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1011602060 |
161 | ″ | ″ | https://doi.org/10.1007/s00330-006-0332-0 |
162 | ″ | rdf:type | schema:CreativeWork |
163 | sg:pub.10.1007/s00330-008-1095-6 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1006002800 |
164 | ″ | ″ | https://doi.org/10.1007/s00330-008-1095-6 |
165 | ″ | rdf:type | schema:CreativeWork |
166 | sg:pub.10.1007/s10554-010-9581-8 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1015272796 |
167 | ″ | ″ | https://doi.org/10.1007/s10554-010-9581-8 |
168 | ″ | rdf:type | schema:CreativeWork |
169 | grid-institutes:grid.415292.9 | schema:alternateName | Department of Radiology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Korea |
170 | ″ | schema:name | Department of Medicine, College of Medicine, Yonsei University Graduate School, Seoul, Korea |
171 | ″ | ″ | Department of Radiology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Korea |
172 | ″ | rdf:type | schema:Organization |
173 | grid-institutes:grid.415562.1 | schema:alternateName | Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea |
174 | ″ | schema:name | Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea |
175 | ″ | rdf:type | schema:Organization |