Leveraging machine learning tools and algorithms for analysis of fruit fly morphometrics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-05-03

AUTHORS

Daisy Salifu, Eric Ali Ibrahim, Henri E. Z. Tonnang

ABSTRACT

Analysis of landmark-based morphometric measurements taken on body parts of insects have been a useful taxonomic approach alongside DNA barcoding in insect identification. Statistical analysis of morphometrics have largely been dominated by traditional methods and approaches such as principal component analysis (PCA), canonical variate analysis (CVA) and discriminant analysis (DA). However, advancement in computing power creates a paradigm shift to apply modern tools such as machine learning. Herein, we assess the predictive performance of four machine learning classifiers; K-nearest neighbor (KNN), random forest (RF), support vector machine (the linear, polynomial and radial kernel SVMs) and artificial neural network (ANNs) on fruit fly morphometrics that were previously analysed using PCA and CVA. KNN and RF performed poorly with overall model accuracy lower than “no-information rate” (NIR) (p value > 0.1). The SVM models had a predictive accuracy of > 95%, significantly higher than NIR (p < 0.001), Kappa > 0.78 and area under curve (AUC) of the receiver operating characteristics was > 0.91; while ANN model had a predictive accuracy of 96%, significantly higher than NIR, Kappa of 0.83 and AUC was 0.98. Wing veins 2, 3, 8, 10, 14 and tibia length were of higher importance than other variables based on both SVM and ANN models. We conclude that SVM and ANN models could be used to discriminate fruit fly species based on wing vein and tibia length measurements or any other morphologically similar pest taxa. These algorithms could be used as candidates for developing an integrated and smart application software for insect discrimination and identification. Variable importance analysis results in this study would be useful for future studies for deciding what must be measured. More... »

PAGES

7208

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-022-11258-w

DOI

http://dx.doi.org/10.1038/s41598-022-11258-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1147551568

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/35505067


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Machine Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Networks, Computer", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Support Vector Machine", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya", 
          "id": "http://www.grid.ac/institutes/grid.419326.b", 
          "name": [
            "International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salifu", 
        "givenName": "Daisy", 
        "id": "sg:person.0615611233.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615611233.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Statistics, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya", 
          "id": "http://www.grid.ac/institutes/grid.411943.a", 
          "name": [
            "International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya", 
            "Department of Statistics, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ibrahim", 
        "givenName": "Eric Ali", 
        "id": "sg:person.012520243612.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012520243612.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya", 
          "id": "http://www.grid.ac/institutes/grid.419326.b", 
          "name": [
            "International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tonnang", 
        "givenName": "Henri E. Z.", 
        "id": "sg:person.01121617221.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121617221.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1756-3305-5-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010349152", 
          "https://doi.org/10.1186/1756-3305-5-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-3305-5-257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002203607", 
          "https://doi.org/10.1186/1756-3305-5-257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-24277-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028525626", 
          "https://doi.org/10.1007/978-3-319-24277-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1206-1565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051026888", 
          "https://doi.org/10.1038/nbt1206-1565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13071-017-2163-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085376761", 
          "https://doi.org/10.1186/s13071-017-2163-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-60327-101-1_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041914437", 
          "https://doi.org/10.1007/978-1-60327-101-1_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-21706-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035613449", 
          "https://doi.org/10.1007/978-0-387-21706-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-019-01335-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111840881", 
          "https://doi.org/10.1007/s10115-019-01335-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s42452-019-0295-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112468091", 
          "https://doi.org/10.1007/s42452-019-0295-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13071-016-1943-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016840595", 
          "https://doi.org/10.1186/s13071-016-1943-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-05-03", 
    "datePublishedReg": "2022-05-03", 
    "description": "Analysis of landmark-based morphometric measurements taken on body parts of insects have been a useful taxonomic approach alongside DNA barcoding in insect identification. Statistical analysis of morphometrics have largely been dominated by traditional methods and approaches such as principal component analysis (PCA), canonical variate analysis (CVA) and discriminant analysis (DA). However, advancement in computing power creates a paradigm shift to apply modern tools such as machine learning. Herein, we assess the predictive performance of four machine learning classifiers; K-nearest neighbor (KNN), random forest (RF), support vector machine (the linear, polynomial and radial kernel SVMs) and artificial neural network (ANNs) on fruit fly morphometrics that were previously analysed using PCA and CVA. KNN and RF performed poorly with overall model accuracy lower than \u201cno-information rate\u201d (NIR) (p value\u2009>\u20090.1). The SVM models had a predictive accuracy of\u2009>\u200995%, significantly higher than NIR (p\u2009<\u20090.001), Kappa\u2009>\u20090.78 and area under curve (AUC) of the receiver operating characteristics was\u2009>\u20090.91; while ANN model had a predictive accuracy of 96%, significantly higher than NIR, Kappa of 0.83 and AUC was 0.98. Wing veins 2, 3, 8, 10, 14 and tibia length were of higher importance than other variables based on both SVM and ANN models. We conclude that SVM and ANN models could be used to discriminate fruit fly species based on wing vein and tibia length measurements or any other morphologically similar pest taxa. These algorithms could be used as candidates for developing an integrated and smart application software for insect discrimination and identification. Variable importance analysis results in this study would be useful for future studies for deciding what must be measured.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-022-11258-w", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "artificial neural network", 
      "random forest", 
      "ANN model", 
      "application software", 
      "machine learning", 
      "neural network", 
      "vector machine", 
      "SVM model", 
      "nearest neighbors", 
      "predictive accuracy", 
      "overall model accuracy", 
      "machine", 
      "principal component analysis", 
      "importance analysis results", 
      "SVM", 
      "model accuracy", 
      "information rate", 
      "algorithm", 
      "discriminant analysis", 
      "traditional methods", 
      "modern tools", 
      "predictive performance", 
      "insect identification", 
      "accuracy", 
      "classifier", 
      "paradigm shift", 
      "KNN", 
      "body parts", 
      "software", 
      "tool", 
      "network", 
      "canonical variate analysis", 
      "component analysis", 
      "learning", 
      "neighbors", 
      "high importance", 
      "tibia length measurements", 
      "model", 
      "analysis results", 
      "advancement", 
      "performance", 
      "statistical analysis", 
      "identification", 
      "receiver", 
      "variate analysis", 
      "method", 
      "approach", 
      "analysis", 
      "power", 
      "AUC", 
      "measurements", 
      "variables", 
      "forest", 
      "part", 
      "results", 
      "area", 
      "curves", 
      "characteristics", 
      "kappa", 
      "candidates", 
      "importance", 
      "length", 
      "length measurements", 
      "NIR", 
      "discrimination", 
      "study", 
      "rate", 
      "shift", 
      "morphometrics", 
      "morphometric measurements", 
      "future studies", 
      "taxonomic approach", 
      "fruit", 
      "insects", 
      "tibia length", 
      "Herein", 
      "barcoding", 
      "vein", 
      "species", 
      "DNA barcoding", 
      "wing veins", 
      "taxa", 
      "pest taxa", 
      "vein 2"
    ], 
    "name": "Leveraging machine learning tools and algorithms for analysis of fruit fly morphometrics", 
    "pagination": "7208", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1147551568"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-022-11258-w"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "35505067"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-022-11258-w", 
      "https://app.dimensions.ai/details/publication/pub.1147551568"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_930.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-022-11258-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-022-11258-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-022-11258-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-022-11258-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-022-11258-w'


 

This table displays all metadata directly associated to this object as RDF triples.

235 TRIPLES      22 PREDICATES      128 URIs      107 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-022-11258-w schema:about N0d21ed644e084dc7be888ea593a34a5d
2 N59fbd59499af4351ba205e16d86f9bb7
3 Nb49617237fc64dd3afc632727a2b486e
4 Nbf63a7b579ac42b4ab52f34ae9e8ecf6
5 Nedf463388b5e42b2ae9bf72b1074b6ad
6 anzsrc-for:01
7 anzsrc-for:0104
8 anzsrc-for:08
9 anzsrc-for:0801
10 schema:author N3c9bf39cff54477c96878bc911d8e658
11 schema:citation sg:pub.10.1007/978-0-387-21706-2
12 sg:pub.10.1007/978-1-60327-101-1_2
13 sg:pub.10.1007/978-3-319-24277-4
14 sg:pub.10.1007/s10115-019-01335-4
15 sg:pub.10.1007/s42452-019-0295-9
16 sg:pub.10.1023/a:1010933404324
17 sg:pub.10.1038/nbt1206-1565
18 sg:pub.10.1186/1756-3305-5-2
19 sg:pub.10.1186/1756-3305-5-257
20 sg:pub.10.1186/s13071-016-1943-1
21 sg:pub.10.1186/s13071-017-2163-z
22 schema:datePublished 2022-05-03
23 schema:datePublishedReg 2022-05-03
24 schema:description Analysis of landmark-based morphometric measurements taken on body parts of insects have been a useful taxonomic approach alongside DNA barcoding in insect identification. Statistical analysis of morphometrics have largely been dominated by traditional methods and approaches such as principal component analysis (PCA), canonical variate analysis (CVA) and discriminant analysis (DA). However, advancement in computing power creates a paradigm shift to apply modern tools such as machine learning. Herein, we assess the predictive performance of four machine learning classifiers; K-nearest neighbor (KNN), random forest (RF), support vector machine (the linear, polynomial and radial kernel SVMs) and artificial neural network (ANNs) on fruit fly morphometrics that were previously analysed using PCA and CVA. KNN and RF performed poorly with overall model accuracy lower than “no-information rate” (NIR) (p value > 0.1). The SVM models had a predictive accuracy of > 95%, significantly higher than NIR (p < 0.001), Kappa > 0.78 and area under curve (AUC) of the receiver operating characteristics was > 0.91; while ANN model had a predictive accuracy of 96%, significantly higher than NIR, Kappa of 0.83 and AUC was 0.98. Wing veins 2, 3, 8, 10, 14 and tibia length were of higher importance than other variables based on both SVM and ANN models. We conclude that SVM and ANN models could be used to discriminate fruit fly species based on wing vein and tibia length measurements or any other morphologically similar pest taxa. These algorithms could be used as candidates for developing an integrated and smart application software for insect discrimination and identification. Variable importance analysis results in this study would be useful for future studies for deciding what must be measured.
25 schema:genre article
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf Na312e36e77b0437a94fbb3631367bc4d
29 Ne5ed79a685f84131b3229a9e77034d1d
30 sg:journal.1045337
31 schema:keywords ANN model
32 AUC
33 DNA barcoding
34 Herein
35 KNN
36 NIR
37 SVM
38 SVM model
39 accuracy
40 advancement
41 algorithm
42 analysis
43 analysis results
44 application software
45 approach
46 area
47 artificial neural network
48 barcoding
49 body parts
50 candidates
51 canonical variate analysis
52 characteristics
53 classifier
54 component analysis
55 curves
56 discriminant analysis
57 discrimination
58 forest
59 fruit
60 future studies
61 high importance
62 identification
63 importance
64 importance analysis results
65 information rate
66 insect identification
67 insects
68 kappa
69 learning
70 length
71 length measurements
72 machine
73 machine learning
74 measurements
75 method
76 model
77 model accuracy
78 modern tools
79 morphometric measurements
80 morphometrics
81 nearest neighbors
82 neighbors
83 network
84 neural network
85 overall model accuracy
86 paradigm shift
87 part
88 performance
89 pest taxa
90 power
91 predictive accuracy
92 predictive performance
93 principal component analysis
94 random forest
95 rate
96 receiver
97 results
98 shift
99 software
100 species
101 statistical analysis
102 study
103 taxa
104 taxonomic approach
105 tibia length
106 tibia length measurements
107 tool
108 traditional methods
109 variables
110 variate analysis
111 vector machine
112 vein
113 vein 2
114 wing veins
115 schema:name Leveraging machine learning tools and algorithms for analysis of fruit fly morphometrics
116 schema:pagination 7208
117 schema:productId N4e73fb661ff646cb8df88995a6163a24
118 N8599877789c24e39ba91010e2ca923a2
119 Nea4371d61f294661aebf6f69408c7d49
120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147551568
121 https://doi.org/10.1038/s41598-022-11258-w
122 schema:sdDatePublished 2022-06-01T22:23
123 schema:sdLicense https://scigraph.springernature.com/explorer/license/
124 schema:sdPublisher Na96e590c22744c1291e98909ea1ff994
125 schema:url https://doi.org/10.1038/s41598-022-11258-w
126 sgo:license sg:explorer/license/
127 sgo:sdDataset articles
128 rdf:type schema:ScholarlyArticle
129 N0d21ed644e084dc7be888ea593a34a5d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Support Vector Machine
131 rdf:type schema:DefinedTerm
132 N3c9bf39cff54477c96878bc911d8e658 rdf:first sg:person.0615611233.95
133 rdf:rest N5ba841606928432f865e477e360fd5d7
134 N4e73fb661ff646cb8df88995a6163a24 schema:name dimensions_id
135 schema:value pub.1147551568
136 rdf:type schema:PropertyValue
137 N59fbd59499af4351ba205e16d86f9bb7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Algorithms
139 rdf:type schema:DefinedTerm
140 N5ba841606928432f865e477e360fd5d7 rdf:first sg:person.012520243612.57
141 rdf:rest Nb2f6f979bba043f4b53230a7d2388f1b
142 N8599877789c24e39ba91010e2ca923a2 schema:name doi
143 schema:value 10.1038/s41598-022-11258-w
144 rdf:type schema:PropertyValue
145 Na312e36e77b0437a94fbb3631367bc4d schema:issueNumber 1
146 rdf:type schema:PublicationIssue
147 Na96e590c22744c1291e98909ea1ff994 schema:name Springer Nature - SN SciGraph project
148 rdf:type schema:Organization
149 Nb2f6f979bba043f4b53230a7d2388f1b rdf:first sg:person.01121617221.22
150 rdf:rest rdf:nil
151 Nb49617237fc64dd3afc632727a2b486e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Machine Learning
153 rdf:type schema:DefinedTerm
154 Nbf63a7b579ac42b4ab52f34ae9e8ecf6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name ROC Curve
156 rdf:type schema:DefinedTerm
157 Ne5ed79a685f84131b3229a9e77034d1d schema:volumeNumber 12
158 rdf:type schema:PublicationVolume
159 Nea4371d61f294661aebf6f69408c7d49 schema:name pubmed_id
160 schema:value 35505067
161 rdf:type schema:PropertyValue
162 Nedf463388b5e42b2ae9bf72b1074b6ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Neural Networks, Computer
164 rdf:type schema:DefinedTerm
165 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
166 schema:name Mathematical Sciences
167 rdf:type schema:DefinedTerm
168 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
169 schema:name Statistics
170 rdf:type schema:DefinedTerm
171 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
172 schema:name Information and Computing Sciences
173 rdf:type schema:DefinedTerm
174 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
175 schema:name Artificial Intelligence and Image Processing
176 rdf:type schema:DefinedTerm
177 sg:journal.1045337 schema:issn 2045-2322
178 schema:name Scientific Reports
179 schema:publisher Springer Nature
180 rdf:type schema:Periodical
181 sg:person.01121617221.22 schema:affiliation grid-institutes:grid.419326.b
182 schema:familyName Tonnang
183 schema:givenName Henri E. Z.
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121617221.22
185 rdf:type schema:Person
186 sg:person.012520243612.57 schema:affiliation grid-institutes:grid.411943.a
187 schema:familyName Ibrahim
188 schema:givenName Eric Ali
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012520243612.57
190 rdf:type schema:Person
191 sg:person.0615611233.95 schema:affiliation grid-institutes:grid.419326.b
192 schema:familyName Salifu
193 schema:givenName Daisy
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615611233.95
195 rdf:type schema:Person
196 sg:pub.10.1007/978-0-387-21706-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035613449
197 https://doi.org/10.1007/978-0-387-21706-2
198 rdf:type schema:CreativeWork
199 sg:pub.10.1007/978-1-60327-101-1_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041914437
200 https://doi.org/10.1007/978-1-60327-101-1_2
201 rdf:type schema:CreativeWork
202 sg:pub.10.1007/978-3-319-24277-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028525626
203 https://doi.org/10.1007/978-3-319-24277-4
204 rdf:type schema:CreativeWork
205 sg:pub.10.1007/s10115-019-01335-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111840881
206 https://doi.org/10.1007/s10115-019-01335-4
207 rdf:type schema:CreativeWork
208 sg:pub.10.1007/s42452-019-0295-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112468091
209 https://doi.org/10.1007/s42452-019-0295-9
210 rdf:type schema:CreativeWork
211 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
212 https://doi.org/10.1023/a:1010933404324
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/nbt1206-1565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051026888
215 https://doi.org/10.1038/nbt1206-1565
216 rdf:type schema:CreativeWork
217 sg:pub.10.1186/1756-3305-5-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010349152
218 https://doi.org/10.1186/1756-3305-5-2
219 rdf:type schema:CreativeWork
220 sg:pub.10.1186/1756-3305-5-257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002203607
221 https://doi.org/10.1186/1756-3305-5-257
222 rdf:type schema:CreativeWork
223 sg:pub.10.1186/s13071-016-1943-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016840595
224 https://doi.org/10.1186/s13071-016-1943-1
225 rdf:type schema:CreativeWork
226 sg:pub.10.1186/s13071-017-2163-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1085376761
227 https://doi.org/10.1186/s13071-017-2163-z
228 rdf:type schema:CreativeWork
229 grid-institutes:grid.411943.a schema:alternateName Department of Statistics, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
230 schema:name Department of Statistics, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
231 International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
232 rdf:type schema:Organization
233 grid-institutes:grid.419326.b schema:alternateName International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
234 schema:name International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
235 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...