A high-performance compilation strategy for multiplexing quantum control architecture View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-05-03

AUTHORS

Zheng Shan, Yu Zhu, Bo Zhao

ABSTRACT

Quantum computers have already shown significant potential to solve specific problems more efficiently than conventional supercomputers. A major challenge towards noisy intermediate-scale quantum computing is characterizing and reducing the various control costs. Quantum programming describes the process of quantum computation as a sequence, whose elements are selected from a finite set of universal quantum gates. Quantum compilation translates quantum programs to ordered pulses to the quantum control devices subsequently and quantum compilation optimization provides a high-level solution to reduce the control cost efficiently. Here, we propose a high-performance compilation strategy for multiplexing quantum control architecture. For representative benchmarks, the utilization efficiency of control devices increased by 49.44% on average in our work, with an acceptable circuit depth expansion executing on several real superconducting quantum computers of IBM. More... »

PAGES

7132

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-022-11154-3

DOI

http://dx.doi.org/10.1038/s41598-022-11154-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1147563037

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/35504941


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Songshan Laboratory, 450001, Zhengzhou, Henan, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "State Key Laboratory of Mathematical Engineering and Advanced Computing, 450001, Zhengzhou, Henan, China", 
            "Songshan Laboratory, 450001, Zhengzhou, Henan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shan", 
        "givenName": "Zheng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Mathematical Engineering and Advanced Computing, 450001, Zhengzhou, Henan, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "State Key Laboratory of Mathematical Engineering and Advanced Computing, 450001, Zhengzhou, Henan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Yu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Songshan Laboratory, 450001, Zhengzhou, Henan, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "State Key Laboratory of Mathematical Engineering and Advanced Computing, 450001, Zhengzhou, Henan, China", 
            "Songshan Laboratory, 450001, Zhengzhou, Henan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Bo", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ncomms5213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042503476", 
          "https://doi.org/10.1038/ncomms5213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature18949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015941993", 
          "https://doi.org/10.1038/nature18949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature23879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091591998", 
          "https://doi.org/10.1038/nature23879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41567-020-0920-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1128291609", 
          "https://doi.org/10.1038/s41567-020-0920-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature18648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015199953", 
          "https://doi.org/10.1038/nature18648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41567-020-0806-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1125316966", 
          "https://doi.org/10.1038/s41567-020-0806-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s42005-021-00684-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1140239159", 
          "https://doi.org/10.1038/s42005-021-00684-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-019-1666-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1122017609", 
          "https://doi.org/10.1038/s41586-019-1666-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature23474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091594880", 
          "https://doi.org/10.1038/nature23474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-021-03268-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1136618056", 
          "https://doi.org/10.1038/s41586-021-03268-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-05-03", 
    "datePublishedReg": "2022-05-03", 
    "description": "Quantum computers have already shown significant potential to solve specific problems more efficiently than conventional supercomputers. A major challenge towards noisy intermediate-scale quantum computing is characterizing and reducing the various control costs. Quantum programming describes the process of quantum computation as a sequence, whose elements are selected from a finite set of universal quantum gates. Quantum compilation translates quantum programs to ordered pulses to the quantum control devices subsequently and quantum compilation optimization provides a high-level solution to reduce the control cost efficiently. Here, we propose a high-performance compilation strategy for multiplexing quantum control architecture. For representative benchmarks, the utilization efficiency of control devices increased by 49.44% on average in our work, with an acceptable circuit depth expansion executing on several real superconducting quantum computers of IBM.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-022-11154-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "quantum computer", 
      "noisy intermediate-scale quantum computing", 
      "universal quantum gates", 
      "compilation strategy", 
      "control architecture", 
      "quantum computation", 
      "quantum gates", 
      "quantum computing", 
      "quantum programming", 
      "high-level solutions", 
      "quantum compilation", 
      "conventional supercomputers", 
      "compilation optimization", 
      "representative benchmarks", 
      "utilization efficiency", 
      "control devices", 
      "computer", 
      "architecture", 
      "specific problems", 
      "pulses", 
      "significant potential", 
      "devices", 
      "depth expansion", 
      "major challenge", 
      "computing", 
      "finite set", 
      "supercomputers", 
      "programming", 
      "gate", 
      "computation", 
      "IBM", 
      "benchmarks", 
      "control costs", 
      "set", 
      "optimization", 
      "efficiency", 
      "compilation", 
      "cost", 
      "challenges", 
      "strategies", 
      "solution", 
      "work", 
      "potential", 
      "expansion", 
      "elements", 
      "process", 
      "program", 
      "sequence", 
      "control", 
      "problem"
    ], 
    "name": "A high-performance compilation strategy for multiplexing quantum control architecture", 
    "pagination": "7132", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1147563037"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-022-11154-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "35504941"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-022-11154-3", 
      "https://app.dimensions.ai/details/publication/pub.1147563037"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_928.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-022-11154-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-022-11154-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-022-11154-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-022-11154-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-022-11154-3'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      22 PREDICATES      86 URIs      68 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-022-11154-3 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N6ff8519e735b440cbbd9451a5a1215f9
4 schema:citation sg:pub.10.1038/nature18648
5 sg:pub.10.1038/nature18949
6 sg:pub.10.1038/nature23474
7 sg:pub.10.1038/nature23879
8 sg:pub.10.1038/ncomms5213
9 sg:pub.10.1038/s41567-020-0806-z
10 sg:pub.10.1038/s41567-020-0920-y
11 sg:pub.10.1038/s41586-019-1666-5
12 sg:pub.10.1038/s41586-021-03268-x
13 sg:pub.10.1038/s42005-021-00684-3
14 schema:datePublished 2022-05-03
15 schema:datePublishedReg 2022-05-03
16 schema:description Quantum computers have already shown significant potential to solve specific problems more efficiently than conventional supercomputers. A major challenge towards noisy intermediate-scale quantum computing is characterizing and reducing the various control costs. Quantum programming describes the process of quantum computation as a sequence, whose elements are selected from a finite set of universal quantum gates. Quantum compilation translates quantum programs to ordered pulses to the quantum control devices subsequently and quantum compilation optimization provides a high-level solution to reduce the control cost efficiently. Here, we propose a high-performance compilation strategy for multiplexing quantum control architecture. For representative benchmarks, the utilization efficiency of control devices increased by 49.44% on average in our work, with an acceptable circuit depth expansion executing on several real superconducting quantum computers of IBM.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree true
20 schema:isPartOf N301883095c4f4a7189d788bc6e46747e
21 Nb5e631ffb13d4a7088a201a65e850e88
22 sg:journal.1045337
23 schema:keywords IBM
24 architecture
25 benchmarks
26 challenges
27 compilation
28 compilation optimization
29 compilation strategy
30 computation
31 computer
32 computing
33 control
34 control architecture
35 control costs
36 control devices
37 conventional supercomputers
38 cost
39 depth expansion
40 devices
41 efficiency
42 elements
43 expansion
44 finite set
45 gate
46 high-level solutions
47 major challenge
48 noisy intermediate-scale quantum computing
49 optimization
50 potential
51 problem
52 process
53 program
54 programming
55 pulses
56 quantum compilation
57 quantum computation
58 quantum computer
59 quantum computing
60 quantum gates
61 quantum programming
62 representative benchmarks
63 sequence
64 set
65 significant potential
66 solution
67 specific problems
68 strategies
69 supercomputers
70 universal quantum gates
71 utilization efficiency
72 work
73 schema:name A high-performance compilation strategy for multiplexing quantum control architecture
74 schema:pagination 7132
75 schema:productId N0ea0b3a9cb924066bd4f23eba4371b90
76 N8f57a6933efd4583bc8c5136ea1f5b58
77 Nb2e93276f27340e18c729a75e2e02d74
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147563037
79 https://doi.org/10.1038/s41598-022-11154-3
80 schema:sdDatePublished 2022-06-01T22:25
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher Nea4c298f00d1496498c07b52e76651b3
83 schema:url https://doi.org/10.1038/s41598-022-11154-3
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N0ea0b3a9cb924066bd4f23eba4371b90 schema:name pubmed_id
88 schema:value 35504941
89 rdf:type schema:PropertyValue
90 N301883095c4f4a7189d788bc6e46747e schema:volumeNumber 12
91 rdf:type schema:PublicationVolume
92 N44994a06a51b4bd194b8324f7a5339ae schema:affiliation grid-institutes:None
93 schema:familyName Shan
94 schema:givenName Zheng
95 rdf:type schema:Person
96 N5bb3caaebe2b49d0b6b4e281abc69338 rdf:first Nbdee36fdcff24b42bc5164125159fe92
97 rdf:rest Nf9cc17dbdcb2418aa8ef36cb5f7c645a
98 N62863726c04347868fb03558dba16dba schema:affiliation grid-institutes:None
99 schema:familyName Zhao
100 schema:givenName Bo
101 rdf:type schema:Person
102 N6ff8519e735b440cbbd9451a5a1215f9 rdf:first N44994a06a51b4bd194b8324f7a5339ae
103 rdf:rest N5bb3caaebe2b49d0b6b4e281abc69338
104 N8f57a6933efd4583bc8c5136ea1f5b58 schema:name doi
105 schema:value 10.1038/s41598-022-11154-3
106 rdf:type schema:PropertyValue
107 Nb2e93276f27340e18c729a75e2e02d74 schema:name dimensions_id
108 schema:value pub.1147563037
109 rdf:type schema:PropertyValue
110 Nb5e631ffb13d4a7088a201a65e850e88 schema:issueNumber 1
111 rdf:type schema:PublicationIssue
112 Nbdee36fdcff24b42bc5164125159fe92 schema:affiliation grid-institutes:None
113 schema:familyName Zhu
114 schema:givenName Yu
115 rdf:type schema:Person
116 Nea4c298f00d1496498c07b52e76651b3 schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 Nf9cc17dbdcb2418aa8ef36cb5f7c645a rdf:first N62863726c04347868fb03558dba16dba
119 rdf:rest rdf:nil
120 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
121 schema:name Physical Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
124 schema:name Quantum Physics
125 rdf:type schema:DefinedTerm
126 sg:journal.1045337 schema:issn 2045-2322
127 schema:name Scientific Reports
128 schema:publisher Springer Nature
129 rdf:type schema:Periodical
130 sg:pub.10.1038/nature18648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015199953
131 https://doi.org/10.1038/nature18648
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nature18949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015941993
134 https://doi.org/10.1038/nature18949
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nature23474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091594880
137 https://doi.org/10.1038/nature23474
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/nature23879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091591998
140 https://doi.org/10.1038/nature23879
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/ncomms5213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042503476
143 https://doi.org/10.1038/ncomms5213
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/s41567-020-0806-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1125316966
146 https://doi.org/10.1038/s41567-020-0806-z
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/s41567-020-0920-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1128291609
149 https://doi.org/10.1038/s41567-020-0920-y
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/s41586-019-1666-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122017609
152 https://doi.org/10.1038/s41586-019-1666-5
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/s41586-021-03268-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1136618056
155 https://doi.org/10.1038/s41586-021-03268-x
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/s42005-021-00684-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140239159
158 https://doi.org/10.1038/s42005-021-00684-3
159 rdf:type schema:CreativeWork
160 grid-institutes:None schema:alternateName Songshan Laboratory, 450001, Zhengzhou, Henan, China
161 State Key Laboratory of Mathematical Engineering and Advanced Computing, 450001, Zhengzhou, Henan, China
162 schema:name Songshan Laboratory, 450001, Zhengzhou, Henan, China
163 State Key Laboratory of Mathematical Engineering and Advanced Computing, 450001, Zhengzhou, Henan, China
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...