MRA-free intracranial vessel localization on MR vessel wall images View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-04-14

AUTHORS

Weijia Fan, Yudi Sang, Hanyue Zhou, Jiayu Xiao, Zhaoyang Fan, Dan Ruan

ABSTRACT

Analysis of vessel morphology is important in assessing intracranial atherosclerosis disease (ICAD). Recently, magnetic resonance (MR) vessel wall imaging (VWI) has been introduced to image ICAD and characterize morphology for atherosclerotic lesions. In order to automatically perform quantitative analysis on VWI data, MR angiography (MRA) acquired in the same imaging session is typically used to localize the vessel segments of interest. However, MRA may be unavailable caused by the lack or failure of the sequence in a VWI protocol. This study aims to investigate the feasibility to infer the vessel location directly from VWI. We propose to synergize an atlas-based method to preserve general vessel structure topology with a deep learning network in the motion field domain to correct the residual geometric error. Performance is quantified by examining the agreement between the extracted vessel structures from the pair-acquired and alignment-corrected angiogram, and the estimated output using a cross-validation scheme. Our proposed pipeline yields clinically feasible performance in localizing intracranial vessels, demonstrating the promise of performing vessel morphology analysis using VWI alone. More... »

PAGES

6240

References to SciGraph publications

  • 2018-09-12. Unsupervised Learning for Cross-Domain Medical Image Synthesis Using Deformation Invariant Cycle Consistency Networks in SIMULATION AND SYNTHESIS IN MEDICAL IMAGING
  • 2016-10-02. A Deep Metric for Multimodal Registration in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2016
  • 2016-10-02. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2016
  • 2017-11-27. SimpleITK Image-Analysis Notebooks: a Collaborative Environment for Education and Reproducible Research in JOURNAL OF DIGITAL IMAGING
  • 2010-01-22. Review of brain MRI image segmentation methods in ARTIFICIAL INTELLIGENCE REVIEW
  • 2020-02-07. Medical Image Synthesis via Deep Learning in DEEP LEARNING IN MEDICAL IMAGE ANALYSIS
  • 2015-11-18. U-Net: Convolutional Networks for Biomedical Image Segmentation in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2015
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-022-10256-2

    DOI

    http://dx.doi.org/10.1038/s41598-022-10256-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1147106956

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/35422490


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Intracranial Arteriosclerosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Magnetic Resonance Angiography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Magnetic Resonance Imaging", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Physics, University of California, Los Angeles, Los Angeles, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.19006.3e", 
              "name": [
                "Department of Physics, University of California, Los Angeles, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fan", 
            "givenName": "Weijia", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.19006.3e", 
              "name": [
                "Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sang", 
            "givenName": "Yudi", 
            "id": "sg:person.07740233571.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07740233571.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.19006.3e", 
              "name": [
                "Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Hanyue", 
            "id": "sg:person.015550166231.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015550166231.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, University of Southern California, Los Angeles, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.42505.36", 
              "name": [
                "Department of Radiology, University of Southern California, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xiao", 
            "givenName": "Jiayu", 
            "id": "sg:person.010005244404.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010005244404.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.42505.36", 
              "name": [
                "Department of Radiology, University of Southern California, Los Angeles, CA, USA", 
                "Department of Radiation Oncology, University of Southern California, Los Angeles, CA, USA", 
                "Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fan", 
            "givenName": "Zhaoyang", 
            "id": "sg:person.01136172260.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.19006.3e", 
              "name": [
                "Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA", 
                "Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ruan", 
            "givenName": "Dan", 
            "id": "sg:person.0610633744.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610633744.57"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-319-46723-8_49", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084908686", 
              "https://doi.org/10.1007/978-3-319-46723-8_49"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-46726-9_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084913662", 
              "https://doi.org/10.1007/978-3-319-46726-9_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-24574-4_28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017774818", 
              "https://doi.org/10.1007/978-3-319-24574-4_28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-33128-3_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124655326", 
              "https://doi.org/10.1007/978-3-030-33128-3_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-00536-8_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106929181", 
              "https://doi.org/10.1007/978-3-030-00536-8_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10278-017-0037-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093029491", 
              "https://doi.org/10.1007/s10278-017-0037-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10462-010-9155-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023121785", 
              "https://doi.org/10.1007/s10462-010-9155-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-04-14", 
        "datePublishedReg": "2022-04-14", 
        "description": "Analysis of vessel morphology is important in assessing intracranial atherosclerosis disease (ICAD). Recently, magnetic resonance (MR) vessel wall imaging (VWI) has been introduced to image ICAD and characterize morphology for atherosclerotic lesions. In order to automatically perform quantitative analysis on VWI data, MR angiography (MRA) acquired in the same imaging session is typically used to localize the vessel segments of interest. However, MRA may be unavailable caused by the lack or failure of the sequence in a VWI protocol. This study aims to investigate the feasibility to infer the vessel location directly from VWI. We propose to synergize an atlas-based method to preserve general vessel structure topology with a deep learning network in the motion field domain to correct the residual geometric error. Performance is quantified by examining the agreement between the extracted vessel structures from the pair-acquired and alignment-corrected angiogram, and the estimated output using a cross-validation scheme. Our proposed pipeline yields clinically feasible performance in localizing intracranial vessels, demonstrating the promise of performing vessel morphology analysis using VWI alone.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-022-10256-2", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8388914", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "keywords": [
          "deep learning network", 
          "atlas-based method", 
          "learning network", 
          "cross-validation scheme", 
          "feasible performance", 
          "residual geometric errors", 
          "pipeline yields", 
          "wall images", 
          "geometric errors", 
          "vessel structure", 
          "network", 
          "vessel wall images", 
          "performance", 
          "field domain", 
          "morphology analysis", 
          "images", 
          "vessel localization", 
          "scheme", 
          "topology", 
          "protocol", 
          "structure topology", 
          "error", 
          "domain", 
          "wall imaging", 
          "vessel location", 
          "feasibility", 
          "morphology", 
          "output", 
          "data", 
          "order", 
          "method", 
          "quantitative analysis", 
          "location", 
          "interest", 
          "imaging session", 
          "localization", 
          "analysis", 
          "atherosclerosis disease", 
          "sequence", 
          "sessions", 
          "promise", 
          "vessel segments", 
          "agreement", 
          "structure", 
          "lack", 
          "vessel morphology", 
          "segments", 
          "same imaging session", 
          "vessel wall imaging", 
          "failure", 
          "MR angiography", 
          "imaging", 
          "vessels", 
          "yield", 
          "intracranial vessels", 
          "study", 
          "magnetic resonance vessel wall imaging", 
          "angiograms", 
          "angiography", 
          "disease", 
          "lesions", 
          "atherosclerotic lesions", 
          "intracranial atherosclerosis disease"
        ], 
        "name": "MRA-free intracranial vessel localization on MR vessel wall images", 
        "pagination": "6240", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1147106956"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-022-10256-2"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "35422490"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-022-10256-2", 
          "https://app.dimensions.ai/details/publication/pub.1147106956"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_929.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-022-10256-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-022-10256-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-022-10256-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-022-10256-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-022-10256-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    213 TRIPLES      21 PREDICATES      99 URIs      84 LITERALS      11 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-022-10256-2 schema:about N24231563a69d41cd96dc9aea02270c9a
    2 N3edb7eb1d2d64a339816f8daf147739c
    3 N53d42e339cd14345b1b2b12f259b81bd
    4 Nf8d7c27c9f564585a19669a865c327cc
    5 anzsrc-for:08
    6 anzsrc-for:0801
    7 schema:author N4b51fda2802d464a91f8eb00023f80cc
    8 schema:citation sg:pub.10.1007/978-3-030-00536-8_6
    9 sg:pub.10.1007/978-3-030-33128-3_2
    10 sg:pub.10.1007/978-3-319-24574-4_28
    11 sg:pub.10.1007/978-3-319-46723-8_49
    12 sg:pub.10.1007/978-3-319-46726-9_2
    13 sg:pub.10.1007/s10278-017-0037-8
    14 sg:pub.10.1007/s10462-010-9155-0
    15 schema:datePublished 2022-04-14
    16 schema:datePublishedReg 2022-04-14
    17 schema:description Analysis of vessel morphology is important in assessing intracranial atherosclerosis disease (ICAD). Recently, magnetic resonance (MR) vessel wall imaging (VWI) has been introduced to image ICAD and characterize morphology for atherosclerotic lesions. In order to automatically perform quantitative analysis on VWI data, MR angiography (MRA) acquired in the same imaging session is typically used to localize the vessel segments of interest. However, MRA may be unavailable caused by the lack or failure of the sequence in a VWI protocol. This study aims to investigate the feasibility to infer the vessel location directly from VWI. We propose to synergize an atlas-based method to preserve general vessel structure topology with a deep learning network in the motion field domain to correct the residual geometric error. Performance is quantified by examining the agreement between the extracted vessel structures from the pair-acquired and alignment-corrected angiogram, and the estimated output using a cross-validation scheme. Our proposed pipeline yields clinically feasible performance in localizing intracranial vessels, demonstrating the promise of performing vessel morphology analysis using VWI alone.
    18 schema:genre article
    19 schema:isAccessibleForFree true
    20 schema:isPartOf N02fff0044bc349d29743d25f46c4f8c5
    21 N26877381a55642068496bd7619b622c2
    22 sg:journal.1045337
    23 schema:keywords MR angiography
    24 agreement
    25 analysis
    26 angiograms
    27 angiography
    28 atherosclerosis disease
    29 atherosclerotic lesions
    30 atlas-based method
    31 cross-validation scheme
    32 data
    33 deep learning network
    34 disease
    35 domain
    36 error
    37 failure
    38 feasibility
    39 feasible performance
    40 field domain
    41 geometric errors
    42 images
    43 imaging
    44 imaging session
    45 interest
    46 intracranial atherosclerosis disease
    47 intracranial vessels
    48 lack
    49 learning network
    50 lesions
    51 localization
    52 location
    53 magnetic resonance vessel wall imaging
    54 method
    55 morphology
    56 morphology analysis
    57 network
    58 order
    59 output
    60 performance
    61 pipeline yields
    62 promise
    63 protocol
    64 quantitative analysis
    65 residual geometric errors
    66 same imaging session
    67 scheme
    68 segments
    69 sequence
    70 sessions
    71 structure
    72 structure topology
    73 study
    74 topology
    75 vessel localization
    76 vessel location
    77 vessel morphology
    78 vessel segments
    79 vessel structure
    80 vessel wall images
    81 vessel wall imaging
    82 vessels
    83 wall images
    84 wall imaging
    85 yield
    86 schema:name MRA-free intracranial vessel localization on MR vessel wall images
    87 schema:pagination 6240
    88 schema:productId N51f1f37b7b084beb81b8bb93d804bbc6
    89 N95b09596f68347c798eddd93053acd03
    90 Ne9266cc0bfa544c388eedc63a76d13cf
    91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147106956
    92 https://doi.org/10.1038/s41598-022-10256-2
    93 schema:sdDatePublished 2022-12-01T06:44
    94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    95 schema:sdPublisher N46df255fc96f461cb2e292bb9b33052f
    96 schema:url https://doi.org/10.1038/s41598-022-10256-2
    97 sgo:license sg:explorer/license/
    98 sgo:sdDataset articles
    99 rdf:type schema:ScholarlyArticle
    100 N02fff0044bc349d29743d25f46c4f8c5 schema:volumeNumber 12
    101 rdf:type schema:PublicationVolume
    102 N10cc428e073f4cdd8899b239eca23c9c schema:affiliation grid-institutes:grid.19006.3e
    103 schema:familyName Fan
    104 schema:givenName Weijia
    105 rdf:type schema:Person
    106 N24231563a69d41cd96dc9aea02270c9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Humans
    108 rdf:type schema:DefinedTerm
    109 N26877381a55642068496bd7619b622c2 schema:issueNumber 1
    110 rdf:type schema:PublicationIssue
    111 N32c105938912404ca9064a8f9c37b7ca rdf:first sg:person.01136172260.58
    112 rdf:rest Na22405b091a1404b819431dc8cdba840
    113 N3edb7eb1d2d64a339816f8daf147739c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Magnetic Resonance Imaging
    115 rdf:type schema:DefinedTerm
    116 N46df255fc96f461cb2e292bb9b33052f schema:name Springer Nature - SN SciGraph project
    117 rdf:type schema:Organization
    118 N4b51fda2802d464a91f8eb00023f80cc rdf:first N10cc428e073f4cdd8899b239eca23c9c
    119 rdf:rest Nc792680deb944c21999e6d33f0aa021d
    120 N517626f9745e4493bcfef073c842eb6e rdf:first sg:person.015550166231.76
    121 rdf:rest N94c6b282d73e4a2186dcbf43f3d4599c
    122 N51f1f37b7b084beb81b8bb93d804bbc6 schema:name doi
    123 schema:value 10.1038/s41598-022-10256-2
    124 rdf:type schema:PropertyValue
    125 N53d42e339cd14345b1b2b12f259b81bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Intracranial Arteriosclerosis
    127 rdf:type schema:DefinedTerm
    128 N94c6b282d73e4a2186dcbf43f3d4599c rdf:first sg:person.010005244404.21
    129 rdf:rest N32c105938912404ca9064a8f9c37b7ca
    130 N95b09596f68347c798eddd93053acd03 schema:name dimensions_id
    131 schema:value pub.1147106956
    132 rdf:type schema:PropertyValue
    133 Na22405b091a1404b819431dc8cdba840 rdf:first sg:person.0610633744.57
    134 rdf:rest rdf:nil
    135 Nc792680deb944c21999e6d33f0aa021d rdf:first sg:person.07740233571.85
    136 rdf:rest N517626f9745e4493bcfef073c842eb6e
    137 Ne9266cc0bfa544c388eedc63a76d13cf schema:name pubmed_id
    138 schema:value 35422490
    139 rdf:type schema:PropertyValue
    140 Nf8d7c27c9f564585a19669a865c327cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Magnetic Resonance Angiography
    142 rdf:type schema:DefinedTerm
    143 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Information and Computing Sciences
    145 rdf:type schema:DefinedTerm
    146 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    147 schema:name Artificial Intelligence and Image Processing
    148 rdf:type schema:DefinedTerm
    149 sg:grant.8388914 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-022-10256-2
    150 rdf:type schema:MonetaryGrant
    151 sg:journal.1045337 schema:issn 2045-2322
    152 schema:name Scientific Reports
    153 schema:publisher Springer Nature
    154 rdf:type schema:Periodical
    155 sg:person.010005244404.21 schema:affiliation grid-institutes:grid.42505.36
    156 schema:familyName Xiao
    157 schema:givenName Jiayu
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010005244404.21
    159 rdf:type schema:Person
    160 sg:person.01136172260.58 schema:affiliation grid-institutes:grid.42505.36
    161 schema:familyName Fan
    162 schema:givenName Zhaoyang
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58
    164 rdf:type schema:Person
    165 sg:person.015550166231.76 schema:affiliation grid-institutes:grid.19006.3e
    166 schema:familyName Zhou
    167 schema:givenName Hanyue
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015550166231.76
    169 rdf:type schema:Person
    170 sg:person.0610633744.57 schema:affiliation grid-institutes:grid.19006.3e
    171 schema:familyName Ruan
    172 schema:givenName Dan
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610633744.57
    174 rdf:type schema:Person
    175 sg:person.07740233571.85 schema:affiliation grid-institutes:grid.19006.3e
    176 schema:familyName Sang
    177 schema:givenName Yudi
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07740233571.85
    179 rdf:type schema:Person
    180 sg:pub.10.1007/978-3-030-00536-8_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106929181
    181 https://doi.org/10.1007/978-3-030-00536-8_6
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/978-3-030-33128-3_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124655326
    184 https://doi.org/10.1007/978-3-030-33128-3_2
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/978-3-319-24574-4_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017774818
    187 https://doi.org/10.1007/978-3-319-24574-4_28
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/978-3-319-46723-8_49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084908686
    190 https://doi.org/10.1007/978-3-319-46723-8_49
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/978-3-319-46726-9_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084913662
    193 https://doi.org/10.1007/978-3-319-46726-9_2
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/s10278-017-0037-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093029491
    196 https://doi.org/10.1007/s10278-017-0037-8
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/s10462-010-9155-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023121785
    199 https://doi.org/10.1007/s10462-010-9155-0
    200 rdf:type schema:CreativeWork
    201 grid-institutes:grid.19006.3e schema:alternateName Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
    202 Department of Physics, University of California, Los Angeles, Los Angeles, CA, USA
    203 Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, USA
    204 schema:name Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
    205 Department of Physics, University of California, Los Angeles, Los Angeles, CA, USA
    206 Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, USA
    207 rdf:type schema:Organization
    208 grid-institutes:grid.42505.36 schema:alternateName Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
    209 Department of Radiology, University of Southern California, Los Angeles, CA, USA
    210 schema:name Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
    211 Department of Radiation Oncology, University of Southern California, Los Angeles, CA, USA
    212 Department of Radiology, University of Southern California, Los Angeles, CA, USA
    213 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...