Characteristic functional cores revealed by hyperbolic disc embedding and k-core percolation on resting-state fMRI View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-03-22

AUTHORS

Wonseok Whi, Youngmin Huh, Seunggyun Ha, Hyekyoung Lee, Hyejin Kang, Dong Soo Lee

ABSTRACT

Hyperbolic disc embedding and k-core percolation reveal the hierarchical structure of functional connectivity on resting-state fMRI (rsfMRI). Using 180 normal adults’ rsfMRI data from the human connectome project database, we visualized inter-voxel relations by embedding voxels on the hyperbolic space using the S1/H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{S}}^{1} /{\mathbb{H}}^{2}$$\end{document} model. We also conducted k-core percolation on 30 participants to investigate core voxels for each individual. It recursively peels the layer off, and this procedure leaves voxels embedded in the center of the hyperbolic disc. We used independent components to classify core voxels, and it revealed stereotypes of individuals such as visual network dominant, default mode network dominant, and distributed patterns. Characteristic core structures of resting-state brain connectivity of normal subjects disclosed the distributed or asymmetric contribution of voxels to the kmax-core, which suggests the hierarchical dominance of certain IC subnetworks characteristic of subgroups of individuals at rest. More... »

PAGES

4887

References to SciGraph publications

  • 2017-01-26. Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness in SCIENTIFIC REPORTS
  • 2019-11-04. The core decomposition of networks: theory, algorithms and applications in THE VLDB JOURNAL
  • 2010-05-29. Saliency, switching, attention and control: a network model of insula function in BRAIN STRUCTURE AND FUNCTION
  • 1966-12. The centrality index of a graph in PSYCHOMETRIKA
  • 2012-09-12. Popularity versus similarity in growing networks in NATURE
  • 2016-05-26. Integrated information theory: from consciousness to its physical substrate in NATURE REVIEWS NEUROSCIENCE
  • 2010-08-29. Identification of influential spreaders in complex networks in NATURE PHYSICS
  • 2015-07-01. Influence maximization in complex networks through optimal percolation in NATURE
  • 2018-06-11. Finding influential nodes for integration in brain networks using optimal percolation theory in NATURE COMMUNICATIONS
  • 2010-04. Catastrophic cascade of failures in interdependent networks in NATURE
  • 2009-02-04. Complex brain networks: graph theoretical analysis of structural and functional systems in NATURE REVIEWS NEUROSCIENCE
  • 2014-09-14. Avoiding catastrophic failure in correlated networks of networks in NATURE PHYSICS
  • 2018-01-09. Structural absorption by barbule microstructures of super black bird of paradise feathers in NATURE COMMUNICATIONS
  • 2017-07-18. Universal mechanism for hybrid percolation transitions in SCIENTIFIC REPORTS
  • 2018-07-30. Spontaneous cortical activity transiently organises into frequency specific phase-coupling networks in NATURE COMMUNICATIONS
  • 2014-03-30. Contributions and challenges for network models in cognitive neuroscience in NATURE NEUROSCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-022-08975-7

    DOI

    http://dx.doi.org/10.1038/s41598-022-08975-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1146475364

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/35318429


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology and Cognitive Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Brain", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Brain Mapping", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Connectome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Magnetic Resonance Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neural Pathways", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Medical Research Center, Seoul National University, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, South Korea", 
                "Department of Nuclear Medicine, Seoul National University and Seoul National University Hospital, Seoul, South Korea", 
                "Medical Research Center, Seoul National University, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Whi", 
            "givenName": "Wonseok", 
            "id": "sg:person.010530452343.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010530452343.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Medical Research Center, Seoul National University, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Medical Research Center, Seoul National University, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huh", 
            "givenName": "Youngmin", 
            "id": "sg:person.07354113173.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07354113173.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Nuclear Medicine, Department of Radiology, Seoul St. Mary\u2019s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.414966.8", 
              "name": [
                "Division of Nuclear Medicine, Department of Radiology, Seoul St. Mary\u2019s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ha", 
            "givenName": "Seunggyun", 
            "id": "sg:person.01107464404.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107464404.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.412484.f", 
              "name": [
                "Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Hyekyoung", 
            "id": "sg:person.0626601031.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626601031.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.412484.f", 
              "name": [
                "Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kang", 
            "givenName": "Hyejin", 
            "id": "sg:person.0675240200.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675240200.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Medical Research Center, Seoul National University, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, South Korea", 
                "Department of Nuclear Medicine, Seoul National University and Seoul National University Hospital, Seoul, South Korea", 
                "Medical Research Center, Seoul National University, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Dong Soo", 
            "id": "sg:person.015617314175.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature11459", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050706724", 
              "https://doi.org/10.1038/nature11459"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys3081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011861855", 
              "https://doi.org/10.1038/nphys3081"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08932", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010370510", 
              "https://doi.org/10.1038/nature08932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02289527", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025048784", 
              "https://doi.org/10.1007/bf02289527"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00778-019-00587-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122299531", 
              "https://doi.org/10.1007/s00778-019-00587-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-016-0028-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079403223", 
              "https://doi.org/10.1038/s41598-016-0028-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-02088-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100092794", 
              "https://doi.org/10.1038/s41467-017-02088-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.3690", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007014462", 
              "https://doi.org/10.1038/nn.3690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00429-010-0262-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036826836", 
              "https://doi.org/10.1007/s00429-010-0262-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrn2575", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004953014", 
              "https://doi.org/10.1038/nrn2575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1746", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016710118", 
              "https://doi.org/10.1038/nphys1746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-06182-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090696302", 
              "https://doi.org/10.1038/s41598-017-06182-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrn.2016.44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009104787", 
              "https://doi.org/10.1038/nrn.2016.44"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-05316-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105814080", 
              "https://doi.org/10.1038/s41467-018-05316-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-04718-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104412566", 
              "https://doi.org/10.1038/s41467-018-04718-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030304197", 
              "https://doi.org/10.1038/nature14604"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-03-22", 
        "datePublishedReg": "2022-03-22", 
        "description": "Hyperbolic disc embedding and k-core percolation reveal the hierarchical structure of functional connectivity on resting-state fMRI (rsfMRI). Using 180 normal adults\u2019 rsfMRI data from the human connectome project database, we visualized inter-voxel relations by embedding voxels on the hyperbolic space using the S1/H2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathbb{S}}^{1} /{\\mathbb{H}}^{2}$$\\end{document} model. We also conducted k-core percolation on 30 participants to investigate core voxels for each individual. It recursively peels the layer off, and this procedure leaves voxels embedded in the center of the hyperbolic disc. We used independent components to classify core voxels, and it revealed stereotypes of individuals such as visual network dominant, default mode network dominant, and distributed patterns. Characteristic core structures of resting-state brain connectivity of normal subjects disclosed the distributed or asymmetric contribution of voxels to the kmax-core, which suggests the hierarchical dominance of certain IC subnetworks characteristic of subgroups of individuals at rest.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-022-08975-7", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "keywords": [
          "resting-state fMRI", 
          "resting-state brain connectivity", 
          "default mode network", 
          "subgroup of individuals", 
          "Human Connectome Project database", 
          "normal subjects", 
          "functional connectivity", 
          "normal adults", 
          "visual network", 
          "brain connectivity", 
          "mode network", 
          "fMRI", 
          "Project database", 
          "stereotypes of individuals", 
          "individuals", 
          "voxels", 
          "k-core percolation", 
          "adults", 
          "subgroups", 
          "subjects", 
          "participants", 
          "rest", 
          "database", 
          "center", 
          "S1/", 
          "procedure", 
          "connectivity", 
          "patterns", 
          "stereotypes", 
          "hierarchical dominance", 
          "data", 
          "independent components", 
          "characteristic core structures", 
          "embedding", 
          "components", 
          "hierarchical structure", 
          "relation", 
          "disk", 
          "asymmetric contribution", 
          "model", 
          "dominance", 
          "network", 
          "subnetworks", 
          "core structure", 
          "contribution", 
          "functional core", 
          "structure", 
          "space", 
          "layer", 
          "core", 
          "hyperbolic disk", 
          "hyperbolic space", 
          "percolation"
        ], 
        "name": "Characteristic functional cores revealed by hyperbolic disc embedding and k-core percolation on resting-state fMRI", 
        "pagination": "4887", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1146475364"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-022-08975-7"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "35318429"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-022-08975-7", 
          "https://app.dimensions.ai/details/publication/pub.1146475364"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_942.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-022-08975-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-022-08975-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-022-08975-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-022-08975-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-022-08975-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    248 TRIPLES      21 PREDICATES      101 URIs      77 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-022-08975-7 schema:about N136812c8bd654c10a0f1ad754ad8319a
    2 N5f311460f23b43448793a92946689594
    3 N615f3b585ae84924befbebbd8566e37f
    4 N8a4c5decb8c849f8ba54ef3b1fcb7c1c
    5 Nb5a4022ad5eb46949a5291cb6fba45ae
    6 Nd8f0fc6c9c5d4be89e179befb7ad5ac4
    7 Neb366afb159a4947ad4839b90deca08d
    8 anzsrc-for:17
    9 anzsrc-for:1701
    10 schema:author N8113c8cfd9f74dc1aba9cb929880169d
    11 schema:citation sg:pub.10.1007/bf02289527
    12 sg:pub.10.1007/s00429-010-0262-0
    13 sg:pub.10.1007/s00778-019-00587-4
    14 sg:pub.10.1038/nature08932
    15 sg:pub.10.1038/nature11459
    16 sg:pub.10.1038/nature14604
    17 sg:pub.10.1038/nn.3690
    18 sg:pub.10.1038/nphys1746
    19 sg:pub.10.1038/nphys3081
    20 sg:pub.10.1038/nrn.2016.44
    21 sg:pub.10.1038/nrn2575
    22 sg:pub.10.1038/s41467-017-02088-w
    23 sg:pub.10.1038/s41467-018-04718-3
    24 sg:pub.10.1038/s41467-018-05316-z
    25 sg:pub.10.1038/s41598-016-0028-x
    26 sg:pub.10.1038/s41598-017-06182-3
    27 schema:datePublished 2022-03-22
    28 schema:datePublishedReg 2022-03-22
    29 schema:description Hyperbolic disc embedding and k-core percolation reveal the hierarchical structure of functional connectivity on resting-state fMRI (rsfMRI). Using 180 normal adults’ rsfMRI data from the human connectome project database, we visualized inter-voxel relations by embedding voxels on the hyperbolic space using the S1/H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{S}}^{1} /{\mathbb{H}}^{2}$$\end{document} model. We also conducted k-core percolation on 30 participants to investigate core voxels for each individual. It recursively peels the layer off, and this procedure leaves voxels embedded in the center of the hyperbolic disc. We used independent components to classify core voxels, and it revealed stereotypes of individuals such as visual network dominant, default mode network dominant, and distributed patterns. Characteristic core structures of resting-state brain connectivity of normal subjects disclosed the distributed or asymmetric contribution of voxels to the kmax-core, which suggests the hierarchical dominance of certain IC subnetworks characteristic of subgroups of individuals at rest.
    30 schema:genre article
    31 schema:isAccessibleForFree true
    32 schema:isPartOf N16a728b0f9bf4479b07c2983eb158ecf
    33 N84dcacb4f40f4910a9a9b1c333e2d495
    34 sg:journal.1045337
    35 schema:keywords Human Connectome Project database
    36 Project database
    37 S1/
    38 adults
    39 asymmetric contribution
    40 brain connectivity
    41 center
    42 characteristic core structures
    43 components
    44 connectivity
    45 contribution
    46 core
    47 core structure
    48 data
    49 database
    50 default mode network
    51 disk
    52 dominance
    53 embedding
    54 fMRI
    55 functional connectivity
    56 functional core
    57 hierarchical dominance
    58 hierarchical structure
    59 hyperbolic disk
    60 hyperbolic space
    61 independent components
    62 individuals
    63 k-core percolation
    64 layer
    65 mode network
    66 model
    67 network
    68 normal adults
    69 normal subjects
    70 participants
    71 patterns
    72 percolation
    73 procedure
    74 relation
    75 rest
    76 resting-state brain connectivity
    77 resting-state fMRI
    78 space
    79 stereotypes
    80 stereotypes of individuals
    81 structure
    82 subgroup of individuals
    83 subgroups
    84 subjects
    85 subnetworks
    86 visual network
    87 voxels
    88 schema:name Characteristic functional cores revealed by hyperbolic disc embedding and k-core percolation on resting-state fMRI
    89 schema:pagination 4887
    90 schema:productId N6eee9c9fb7b54b4e9e2e9c99e8661d91
    91 N785d6f4a96cc47e884dae2d4adeb0cd3
    92 Na0440ac0ae8e4300bc3c50b0270693f7
    93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1146475364
    94 https://doi.org/10.1038/s41598-022-08975-7
    95 schema:sdDatePublished 2022-09-02T16:08
    96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    97 schema:sdPublisher N8733f413597c4ce8939b561e98667533
    98 schema:url https://doi.org/10.1038/s41598-022-08975-7
    99 sgo:license sg:explorer/license/
    100 sgo:sdDataset articles
    101 rdf:type schema:ScholarlyArticle
    102 N136812c8bd654c10a0f1ad754ad8319a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Brain Mapping
    104 rdf:type schema:DefinedTerm
    105 N16a728b0f9bf4479b07c2983eb158ecf schema:issueNumber 1
    106 rdf:type schema:PublicationIssue
    107 N553da47125014f128dccd73052ffd3d6 rdf:first sg:person.07354113173.37
    108 rdf:rest Nc7fce951034a41449fb85735a818390a
    109 N5f311460f23b43448793a92946689594 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Neural Pathways
    111 rdf:type schema:DefinedTerm
    112 N615f3b585ae84924befbebbd8566e37f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Connectome
    114 rdf:type schema:DefinedTerm
    115 N6eee9c9fb7b54b4e9e2e9c99e8661d91 schema:name dimensions_id
    116 schema:value pub.1146475364
    117 rdf:type schema:PropertyValue
    118 N785d6f4a96cc47e884dae2d4adeb0cd3 schema:name pubmed_id
    119 schema:value 35318429
    120 rdf:type schema:PropertyValue
    121 N8113c8cfd9f74dc1aba9cb929880169d rdf:first sg:person.010530452343.90
    122 rdf:rest N553da47125014f128dccd73052ffd3d6
    123 N84dcacb4f40f4910a9a9b1c333e2d495 schema:volumeNumber 12
    124 rdf:type schema:PublicationVolume
    125 N8733f413597c4ce8939b561e98667533 schema:name Springer Nature - SN SciGraph project
    126 rdf:type schema:Organization
    127 N8a4c5decb8c849f8ba54ef3b1fcb7c1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Magnetic Resonance Imaging
    129 rdf:type schema:DefinedTerm
    130 Na0440ac0ae8e4300bc3c50b0270693f7 schema:name doi
    131 schema:value 10.1038/s41598-022-08975-7
    132 rdf:type schema:PropertyValue
    133 Nb185395459ff4c24aa27c78be1f58f4d rdf:first sg:person.0675240200.25
    134 rdf:rest Nf7c07469c86942928eb8f597c38dbbd4
    135 Nb5a4022ad5eb46949a5291cb6fba45ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Humans
    137 rdf:type schema:DefinedTerm
    138 Nc7fce951034a41449fb85735a818390a rdf:first sg:person.01107464404.68
    139 rdf:rest Ncfee493bf22c4b3582425558ce276dd9
    140 Ncfee493bf22c4b3582425558ce276dd9 rdf:first sg:person.0626601031.23
    141 rdf:rest Nb185395459ff4c24aa27c78be1f58f4d
    142 Nd8f0fc6c9c5d4be89e179befb7ad5ac4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Brain
    144 rdf:type schema:DefinedTerm
    145 Neb366afb159a4947ad4839b90deca08d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Adult
    147 rdf:type schema:DefinedTerm
    148 Nf7c07469c86942928eb8f597c38dbbd4 rdf:first sg:person.015617314175.88
    149 rdf:rest rdf:nil
    150 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
    151 schema:name Psychology and Cognitive Sciences
    152 rdf:type schema:DefinedTerm
    153 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
    154 schema:name Psychology
    155 rdf:type schema:DefinedTerm
    156 sg:journal.1045337 schema:issn 2045-2322
    157 schema:name Scientific Reports
    158 schema:publisher Springer Nature
    159 rdf:type schema:Periodical
    160 sg:person.010530452343.90 schema:affiliation grid-institutes:grid.31501.36
    161 schema:familyName Whi
    162 schema:givenName Wonseok
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010530452343.90
    164 rdf:type schema:Person
    165 sg:person.01107464404.68 schema:affiliation grid-institutes:grid.414966.8
    166 schema:familyName Ha
    167 schema:givenName Seunggyun
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107464404.68
    169 rdf:type schema:Person
    170 sg:person.015617314175.88 schema:affiliation grid-institutes:grid.31501.36
    171 schema:familyName Lee
    172 schema:givenName Dong Soo
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88
    174 rdf:type schema:Person
    175 sg:person.0626601031.23 schema:affiliation grid-institutes:grid.412484.f
    176 schema:familyName Lee
    177 schema:givenName Hyekyoung
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626601031.23
    179 rdf:type schema:Person
    180 sg:person.0675240200.25 schema:affiliation grid-institutes:grid.412484.f
    181 schema:familyName Kang
    182 schema:givenName Hyejin
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675240200.25
    184 rdf:type schema:Person
    185 sg:person.07354113173.37 schema:affiliation grid-institutes:grid.31501.36
    186 schema:familyName Huh
    187 schema:givenName Youngmin
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07354113173.37
    189 rdf:type schema:Person
    190 sg:pub.10.1007/bf02289527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025048784
    191 https://doi.org/10.1007/bf02289527
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s00429-010-0262-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036826836
    194 https://doi.org/10.1007/s00429-010-0262-0
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s00778-019-00587-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122299531
    197 https://doi.org/10.1007/s00778-019-00587-4
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/nature08932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010370510
    200 https://doi.org/10.1038/nature08932
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/nature11459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050706724
    203 https://doi.org/10.1038/nature11459
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/nature14604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030304197
    206 https://doi.org/10.1038/nature14604
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/nn.3690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007014462
    209 https://doi.org/10.1038/nn.3690
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/nphys1746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016710118
    212 https://doi.org/10.1038/nphys1746
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/nphys3081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011861855
    215 https://doi.org/10.1038/nphys3081
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/nrn.2016.44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009104787
    218 https://doi.org/10.1038/nrn.2016.44
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/nrn2575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004953014
    221 https://doi.org/10.1038/nrn2575
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/s41467-017-02088-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1100092794
    224 https://doi.org/10.1038/s41467-017-02088-w
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/s41467-018-04718-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104412566
    227 https://doi.org/10.1038/s41467-018-04718-3
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/s41467-018-05316-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1105814080
    230 https://doi.org/10.1038/s41467-018-05316-z
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/s41598-016-0028-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1079403223
    233 https://doi.org/10.1038/s41598-016-0028-x
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/s41598-017-06182-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090696302
    236 https://doi.org/10.1038/s41598-017-06182-3
    237 rdf:type schema:CreativeWork
    238 grid-institutes:grid.31501.36 schema:alternateName Medical Research Center, Seoul National University, Seoul, South Korea
    239 schema:name Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, South Korea
    240 Department of Nuclear Medicine, Seoul National University and Seoul National University Hospital, Seoul, South Korea
    241 Medical Research Center, Seoul National University, Seoul, South Korea
    242 rdf:type schema:Organization
    243 grid-institutes:grid.412484.f schema:alternateName Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
    244 schema:name Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
    245 rdf:type schema:Organization
    246 grid-institutes:grid.414966.8 schema:alternateName Division of Nuclear Medicine, Department of Radiology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
    247 schema:name Division of Nuclear Medicine, Department of Radiology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
    248 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...