Entropy generation from convective–radiative moving exponential porous fins with variable thermal conductivity and internal heat generations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-02-02

AUTHORS

Zia Ud Din, Amir Ali, Manuel De la Sen, Gul Zaman

ABSTRACT

The performance and thermal properties of convective–radiative rectangular and moving exponential porous fins with variable thermal conductivity together with internal heat generation are investigated. The second law of thermodynamics is used to investigate entropy generation in the proposed fins. The model is numerically solved using shooting technique. It is observed that the entropy generation depends on porosity parameter, temperature ratio, temperature distribution, thermal conductivity and fins structure. It is noted that entropy generation for a decay exponential fin is higher than that of a rectangular fin which is greater than that of a growing exponential fin. Moreover, entropy generation decreases as thermal conductivity increases. The results also reveal that entropy generation is maximum at the fin’s base and the average entropy production depends on porosity parameters and temperature ratio. It is further reveal that the temperature ratio has a smaller amount of influence on entropy as compared to porosity parameter. It is concluded that when the temperature ratio is increases from 1.1 to 1.9, the entropy generation number is also increase by 30%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$30\%$$\end{document} approximately. However, increasing porosity from 1 to 80 gives 14-fold increase in average entropy generation. More... »

PAGES

1791

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-022-05507-1

DOI

http://dx.doi.org/10.1038/s41598-022-05507-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1145192915

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/35110597


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, University of Malakand, Khyber Pakhtunkhwa, Pakistan", 
          "id": "http://www.grid.ac/institutes/grid.440567.4", 
          "name": [
            "Department of Mathematics, University of Malakand, Khyber Pakhtunkhwa, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Din", 
        "givenName": "Zia Ud", 
        "id": "sg:person.010352651565.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010352651565.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, University of Malakand, Khyber Pakhtunkhwa, Pakistan", 
          "id": "http://www.grid.ac/institutes/grid.440567.4", 
          "name": [
            "Department of Mathematics, University of Malakand, Khyber Pakhtunkhwa, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ali", 
        "givenName": "Amir", 
        "id": "sg:person.012721760120.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012721760120.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electricity and Electronics, Institute of Research and Development of Processes Faculty of Science and Technology, University of the Basque Country Campus of Leioa, 48940, Leioa, Spain", 
          "id": "http://www.grid.ac/institutes/grid.11480.3c", 
          "name": [
            "Department of Electricity and Electronics, Institute of Research and Development of Processes Faculty of Science and Technology, University of the Basque Country Campus of Leioa, 48940, Leioa, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De la Sen", 
        "givenName": "Manuel", 
        "id": "sg:person.01345537335.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345537335.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, University of Malakand, Khyber Pakhtunkhwa, Pakistan", 
          "id": "http://www.grid.ac/institutes/grid.440567.4", 
          "name": [
            "Department of Mathematics, University of Malakand, Khyber Pakhtunkhwa, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaman", 
        "givenName": "Gul", 
        "id": "sg:person.01205157301.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205157301.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12206-018-0846-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106984539", 
          "https://doi.org/10.1007/s12206-018-0846-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10765-012-1179-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012697506", 
          "https://doi.org/10.1007/s10765-012-1179-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-02-02", 
    "datePublishedReg": "2022-02-02", 
    "description": "The performance and thermal properties of convective\u2013radiative rectangular and moving exponential porous fins with variable thermal conductivity together with internal heat generation are investigated. The second law of thermodynamics is used to investigate entropy generation in the proposed fins. The model is numerically solved using shooting technique. It is observed that the entropy generation depends on porosity parameter, temperature ratio, temperature distribution, thermal conductivity and fins structure. It is noted that entropy generation for a decay exponential fin is higher than that of a rectangular fin which is greater than that of a growing exponential fin. Moreover, entropy generation decreases as thermal conductivity increases. The results also reveal that entropy generation is maximum at the fin\u2019s base and the average entropy production depends on porosity parameters and temperature ratio. It is further reveal that the temperature ratio has a smaller amount of influence on entropy as compared to porosity parameter. It is concluded that when the temperature ratio is increases from 1.1 to 1.9, the entropy generation number is also increase by 30%\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$30\\%$$\\end{document} approximately. However, increasing porosity from 1 to 80 gives 14-fold increase in average entropy generation.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-022-05507-1", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "internal heat generation", 
      "variable thermal conductivity", 
      "entropy generation", 
      "thermal conductivity", 
      "porosity parameter", 
      "porous fins", 
      "temperature ratio", 
      "heat generation", 
      "average entropy generation", 
      "average entropy production", 
      "exponential fins", 
      "entropy generation decreases", 
      "thermal conductivity increases", 
      "entropy generation number", 
      "rectangular fins", 
      "temperature distribution", 
      "fin structure", 
      "entropy production", 
      "generation decreases", 
      "thermal properties", 
      "conductivity increases", 
      "second law", 
      "conductivity", 
      "fins", 
      "generation number", 
      "fin base", 
      "porosity", 
      "parameters", 
      "small amount", 
      "generation", 
      "ratio", 
      "entropy", 
      "rectangular", 
      "thermodynamics", 
      "performance", 
      "properties", 
      "law", 
      "increase", 
      "model", 
      "structure", 
      "technique", 
      "influence", 
      "distribution", 
      "base", 
      "amount", 
      "results", 
      "number", 
      "production", 
      "decrease"
    ], 
    "name": "Entropy generation from convective\u2013radiative moving exponential porous fins with variable thermal conductivity and internal heat generations", 
    "pagination": "1791", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1145192915"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-022-05507-1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "35110597"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-022-05507-1", 
      "https://app.dimensions.ai/details/publication/pub.1145192915"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_925.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-022-05507-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-022-05507-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-022-05507-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-022-05507-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-022-05507-1'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      21 PREDICATES      76 URIs      66 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-022-05507-1 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N2bc2cc8a29f3466e9e7399c174a8d4c0
4 schema:citation sg:pub.10.1007/s10765-012-1179-z
5 sg:pub.10.1007/s12206-018-0846-9
6 schema:datePublished 2022-02-02
7 schema:datePublishedReg 2022-02-02
8 schema:description The performance and thermal properties of convective–radiative rectangular and moving exponential porous fins with variable thermal conductivity together with internal heat generation are investigated. The second law of thermodynamics is used to investigate entropy generation in the proposed fins. The model is numerically solved using shooting technique. It is observed that the entropy generation depends on porosity parameter, temperature ratio, temperature distribution, thermal conductivity and fins structure. It is noted that entropy generation for a decay exponential fin is higher than that of a rectangular fin which is greater than that of a growing exponential fin. Moreover, entropy generation decreases as thermal conductivity increases. The results also reveal that entropy generation is maximum at the fin’s base and the average entropy production depends on porosity parameters and temperature ratio. It is further reveal that the temperature ratio has a smaller amount of influence on entropy as compared to porosity parameter. It is concluded that when the temperature ratio is increases from 1.1 to 1.9, the entropy generation number is also increase by 30%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$30\%$$\end{document} approximately. However, increasing porosity from 1 to 80 gives 14-fold increase in average entropy generation.
9 schema:genre article
10 schema:isAccessibleForFree true
11 schema:isPartOf N643a440fb7cd4ed5b2b2c92617999ac7
12 Ned49d6082e46457db4b779bc5c688dc3
13 sg:journal.1045337
14 schema:keywords amount
15 average entropy generation
16 average entropy production
17 base
18 conductivity
19 conductivity increases
20 decrease
21 distribution
22 entropy
23 entropy generation
24 entropy generation decreases
25 entropy generation number
26 entropy production
27 exponential fins
28 fin base
29 fin structure
30 fins
31 generation
32 generation decreases
33 generation number
34 heat generation
35 increase
36 influence
37 internal heat generation
38 law
39 model
40 number
41 parameters
42 performance
43 porosity
44 porosity parameter
45 porous fins
46 production
47 properties
48 ratio
49 rectangular
50 rectangular fins
51 results
52 second law
53 small amount
54 structure
55 technique
56 temperature distribution
57 temperature ratio
58 thermal conductivity
59 thermal conductivity increases
60 thermal properties
61 thermodynamics
62 variable thermal conductivity
63 schema:name Entropy generation from convective–radiative moving exponential porous fins with variable thermal conductivity and internal heat generations
64 schema:pagination 1791
65 schema:productId Naf8a75efefe8472f862e760ccdc52aa4
66 Nd5eee0bb6cb34a6d8dd0fd824edade2b
67 Ne96b1fbe1c4242a58edc4e934a432f87
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1145192915
69 https://doi.org/10.1038/s41598-022-05507-1
70 schema:sdDatePublished 2022-12-01T06:44
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher Ncf57bc9b010d4360a7080313db18913b
73 schema:url https://doi.org/10.1038/s41598-022-05507-1
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N2bc2cc8a29f3466e9e7399c174a8d4c0 rdf:first sg:person.010352651565.07
78 rdf:rest Nea82e7d1f5cc46a9a5b6ce9fd1c8a17d
79 N3fd238b0b07d49cb9380dc9cd7867335 rdf:first sg:person.01345537335.72
80 rdf:rest N66a7dd780504442a86f61fe4702feca3
81 N643a440fb7cd4ed5b2b2c92617999ac7 schema:volumeNumber 12
82 rdf:type schema:PublicationVolume
83 N66a7dd780504442a86f61fe4702feca3 rdf:first sg:person.01205157301.86
84 rdf:rest rdf:nil
85 Naf8a75efefe8472f862e760ccdc52aa4 schema:name dimensions_id
86 schema:value pub.1145192915
87 rdf:type schema:PropertyValue
88 Ncf57bc9b010d4360a7080313db18913b schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 Nd5eee0bb6cb34a6d8dd0fd824edade2b schema:name pubmed_id
91 schema:value 35110597
92 rdf:type schema:PropertyValue
93 Ne96b1fbe1c4242a58edc4e934a432f87 schema:name doi
94 schema:value 10.1038/s41598-022-05507-1
95 rdf:type schema:PropertyValue
96 Nea82e7d1f5cc46a9a5b6ce9fd1c8a17d rdf:first sg:person.012721760120.23
97 rdf:rest N3fd238b0b07d49cb9380dc9cd7867335
98 Ned49d6082e46457db4b779bc5c688dc3 schema:issueNumber 1
99 rdf:type schema:PublicationIssue
100 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
101 schema:name Engineering
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
104 schema:name Materials Engineering
105 rdf:type schema:DefinedTerm
106 sg:journal.1045337 schema:issn 2045-2322
107 schema:name Scientific Reports
108 schema:publisher Springer Nature
109 rdf:type schema:Periodical
110 sg:person.010352651565.07 schema:affiliation grid-institutes:grid.440567.4
111 schema:familyName Din
112 schema:givenName Zia Ud
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010352651565.07
114 rdf:type schema:Person
115 sg:person.01205157301.86 schema:affiliation grid-institutes:grid.440567.4
116 schema:familyName Zaman
117 schema:givenName Gul
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205157301.86
119 rdf:type schema:Person
120 sg:person.012721760120.23 schema:affiliation grid-institutes:grid.440567.4
121 schema:familyName Ali
122 schema:givenName Amir
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012721760120.23
124 rdf:type schema:Person
125 sg:person.01345537335.72 schema:affiliation grid-institutes:grid.11480.3c
126 schema:familyName De la Sen
127 schema:givenName Manuel
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345537335.72
129 rdf:type schema:Person
130 sg:pub.10.1007/s10765-012-1179-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1012697506
131 https://doi.org/10.1007/s10765-012-1179-z
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s12206-018-0846-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106984539
134 https://doi.org/10.1007/s12206-018-0846-9
135 rdf:type schema:CreativeWork
136 grid-institutes:grid.11480.3c schema:alternateName Department of Electricity and Electronics, Institute of Research and Development of Processes Faculty of Science and Technology, University of the Basque Country Campus of Leioa, 48940, Leioa, Spain
137 schema:name Department of Electricity and Electronics, Institute of Research and Development of Processes Faculty of Science and Technology, University of the Basque Country Campus of Leioa, 48940, Leioa, Spain
138 rdf:type schema:Organization
139 grid-institutes:grid.440567.4 schema:alternateName Department of Mathematics, University of Malakand, Khyber Pakhtunkhwa, Pakistan
140 schema:name Department of Mathematics, University of Malakand, Khyber Pakhtunkhwa, Pakistan
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...