Numerous chondritic impactors and oxidized magma ocean set Earth’s volatile depletion View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-10-22

AUTHORS

Haruka Sakuraba, Hiroyuki Kurokawa, Hidenori Genda, Kenji Ohta

ABSTRACT

Earth’s surface environment is largely influenced by its budget of major volatile elements: carbon (C), nitrogen (N), and hydrogen (H). Although the volatiles on Earth are thought to have been delivered by chondritic materials, the elemental composition of the bulk silicate Earth (BSE) shows depletion in the order of N, C, and H. Previous studies have concluded that non-chondritic materials are needed for this depletion pattern. Here, we model the evolution of the volatile abundances in the atmosphere, oceans, crust, mantle, and core through the accretion history by considering elemental partitioning and impact erosion. We show that the BSE depletion pattern can be reproduced from continuous accretion of chondritic bodies by the partitioning of C into the core and H storage in the magma ocean in the main accretion stage and atmospheric erosion of N in the late accretion stage. This scenario requires a relatively oxidized magma ocean (log10fO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log _{10} f_{{\mathrm{O}}_2}$$\end{document}≳\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gtrsim$$\end{document}IW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{IW}}$$\end{document}-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-2$$\end{document}, where fO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{{\mathrm{O}}_2}$$\end{document} is the oxygen fugacity, IW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{IW}$$\end{document} is log10fO2IW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log _{10} f_{{\mathrm{O}}_2}^{\mathrm{IW}}$$\end{document}, and fO2IW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{{\mathrm{O}}_2}^{\mathrm{IW}}$$\end{document} is fO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{{\mathrm{O}}_2}$$\end{document} at the iron-wüstite buffer), the dominance of small impactors in the late accretion, and the storage of H and C in oceanic water and carbonate rocks in the late accretion stage, all of which are naturally expected from the formation of an Earth-sized planet in the habitable zone. More... »

PAGES

20894

References to SciGraph publications

  • 2003-04. Elemental and Isotopic Abundances of Carbon and Nitrogen in Meteorites in SPACE SCIENCE REVIEWS
  • 2013-05-29. Emergence of two types of terrestrial planet on solidification of magma ocean in NATURE
  • 2007-02. Atmospheric erosion and replenishment induced by impacts of cosmic bodies upon the Earth and Mars in SOLAR SYSTEM RESEARCH
  • 2020-03-11. Ruthenium isotope vestige of Earth’s pre-late-veneer mantle preserved in Archaean rocks in NATURE
  • 2016-09-05. Carbon and sulfur budget of the silicate Earth explained by accretion of differentiated planetary embryos in NATURE GEOSCIENCE
  • 2001-01. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago in NATURE
  • 2011-06-05. A low mass for Mars from Jupiter’s early gas-driven migration in NATURE
  • 2017-01-26. The isotopic nature of the Earth’s accreting material through time in NATURE
  • 2019-04-29. Terrestrial magma ocean origin of the Moon in NATURE GEOSCIENCE
  • 2017-08-09. Water in the Earth’s Interior: Distribution and Origin in SPACE SCIENCE REVIEWS
  • 2005-02. Enhanced atmospheric loss on protoplanets at the giant impact phase in the presence of oceans in NATURE
  • 2021-05-10. Rates of protoplanetary accretion and differentiation set nitrogen budget of rocky planets in NATURE GEOSCIENCE
  • 2001-08. Origin of the Moon in a giant impact near the end of the Earth's formation in NATURE
  • 1984. Mantle Chemistry and Accretion History of the Earth in ARCHAEAN GEOCHEMISTRY
  • 2003-04. The D/H Ratio in Chondrites in SPACE SCIENCE REVIEWS
  • 2006-06. Accretion of the Earth and segregation of its core in NATURE
  • 2017-12-04. Heterogeneous delivery of silicate and metal to the Earth by large planetesimals in NATURE GEOSCIENCE
  • 2020-05-18. The Earth’s core as a reservoir of water in NATURE GEOSCIENCE
  • 2008-11. Low heat flow inferred from >4 Gyr zircons suggests Hadean plate boundary interactions in NATURE
  • 2009-10. Volatile accretion history of the terrestrial planets and dynamic implications in NATURE
  • 2002-08. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry in NATURE
  • 2021-05-11. Experimental evidence for hydrogen incorporation into Earth’s core in NATURE COMMUNICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-021-99240-w

    DOI

    http://dx.doi.org/10.1038/s41598-021-99240-w

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1142058716

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/34686749


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0402", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Geochemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Geology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, 152-8551, Tokyo, Japan", 
              "id": "http://www.grid.ac/institutes/grid.32197.3e", 
              "name": [
                "Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, 152-8551, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sakuraba", 
            "givenName": "Haruka", 
            "id": "sg:person.015043704554.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015043704554.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, 152-8550, Tokyo, Japan", 
              "id": "http://www.grid.ac/institutes/grid.32197.3e", 
              "name": [
                "Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, 152-8550, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kurokawa", 
            "givenName": "Hiroyuki", 
            "id": "sg:person.015501011137.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015501011137.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, 152-8550, Tokyo, Japan", 
              "id": "http://www.grid.ac/institutes/grid.32197.3e", 
              "name": [
                "Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, 152-8550, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Genda", 
            "givenName": "Hidenori", 
            "id": "sg:person.011475104271.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011475104271.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, 152-8551, Tokyo, Japan", 
              "id": "http://www.grid.ac/institutes/grid.32197.3e", 
              "name": [
                "Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, 152-8551, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ohta", 
            "givenName": "Kenji", 
            "id": "sg:person.012006727630.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012006727630.16"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/35089010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007933173", 
              "https://doi.org/10.1038/35089010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002044847", 
              "https://doi.org/10.1038/nature12163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0038094607010030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037585819", 
              "https://doi.org/10.1134/s0038094607010030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-020-2069-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125550920", 
              "https://doi.org/10.1038/s41586-020-2069-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08477", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042977464", 
              "https://doi.org/10.1038/nature08477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-021-22035-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1137921546", 
              "https://doi.org/10.1038/s41467-021-22035-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature20830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074211290", 
              "https://doi.org/10.1038/nature20830"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo2801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050310503", 
              "https://doi.org/10.1038/ngeo2801"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04763", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021302942", 
              "https://doi.org/10.1038/nature04763"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03360", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042387026", 
              "https://doi.org/10.1038/nature03360"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41561-020-0578-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1127686671", 
              "https://doi.org/10.1038/s41561-020-0578-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1024629402715", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001547167", 
              "https://doi.org/10.1023/a:1024629402715"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41561-019-0354-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113811333", 
              "https://doi.org/10.1038/s41561-019-0354-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1024645906350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040797030", 
              "https://doi.org/10.1023/a:1024645906350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11214-017-0387-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091101466", 
              "https://doi.org/10.1007/s11214-017-0387-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35051550", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037786729", 
              "https://doi.org/10.1038/35051550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature00982", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032963935", 
              "https://doi.org/10.1038/nature00982"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41561-017-0022-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093139685", 
              "https://doi.org/10.1038/s41561-017-0022-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07465", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052586915", 
              "https://doi.org/10.1038/nature07465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-70001-9_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046857052", 
              "https://doi.org/10.1007/978-3-642-70001-9_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030609148", 
              "https://doi.org/10.1038/nature10201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41561-021-00733-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1137878971", 
              "https://doi.org/10.1038/s41561-021-00733-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-10-22", 
        "datePublishedReg": "2021-10-22", 
        "description": "Earth\u2019s surface environment is largely influenced by its budget of major volatile elements: carbon (C), nitrogen (N), and hydrogen (H). Although the volatiles on Earth are thought to have been delivered by chondritic materials, the elemental composition of the bulk silicate Earth (BSE) shows depletion in the order of N, C, and H. Previous studies have concluded that non-chondritic materials are needed for this depletion pattern. Here, we model the evolution of the volatile abundances in the atmosphere, oceans, crust, mantle, and core through the accretion history by considering elemental partitioning and impact erosion. We show that the BSE depletion pattern can be reproduced from continuous accretion of chondritic bodies by the partitioning of C into the core and H storage in the magma ocean in the main accretion stage and atmospheric erosion of N in the late accretion stage. This scenario requires a relatively oxidized magma ocean (log10fO2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\log _{10} f_{{\\mathrm{O}}_2}$$\\end{document}\u2273\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\gtrsim$$\\end{document}IW\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathrm{IW}}$$\\end{document}-2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$-2$$\\end{document}, where fO2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$f_{{\\mathrm{O}}_2}$$\\end{document} is the oxygen fugacity, IW\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathrm{IW}$$\\end{document} is log10fO2IW\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\log _{10} f_{{\\mathrm{O}}_2}^{\\mathrm{IW}}$$\\end{document}, and fO2IW\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$f_{{\\mathrm{O}}_2}^{\\mathrm{IW}}$$\\end{document} is fO2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$f_{{\\mathrm{O}}_2}$$\\end{document} at the iron-w\u00fcstite buffer), the dominance of small impactors in the late accretion, and the storage of H and C in oceanic water and carbonate\u00a0rocks in the late accretion stage, all of which are naturally expected from the formation of an Earth-sized planet in the habitable zone.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-021-99240-w", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8536891", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7540432", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6957909", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "keywords": [
          "bulk silicate Earth", 
          "late accretion stage", 
          "magma ocean", 
          "accretion stage", 
          "volatile depletion", 
          "surface environment", 
          "depletion patterns", 
          "major volatile elements", 
          "Earth's surface environment", 
          "Earth-sized planets", 
          "silicate Earth", 
          "chondritic impactor", 
          "late accretion", 
          "chondritic bodies", 
          "volatile abundances", 
          "chondritic material", 
          "atmospheric erosion", 
          "oceanic waters", 
          "volatile elements", 
          "continuous accretion", 
          "Ocean", 
          "small impactors", 
          "accretion history", 
          "impact erosion", 
          "habitable zone", 
          "elemental partitioning", 
          "elemental composition", 
          "accretion", 
          "erosion", 
          "Earth", 
          "impactor", 
          "partitioning", 
          "crust", 
          "mantle", 
          "rocks", 
          "zone", 
          "depletion", 
          "budget", 
          "atmosphere", 
          "planets", 
          "water", 
          "volatiles", 
          "core", 
          "carbon", 
          "abundance", 
          "previous studies", 
          "evolution", 
          "patterns", 
          "composition", 
          "dominance", 
          "storage", 
          "formation", 
          "scenarios", 
          "stage", 
          "nitrogen", 
          "history", 
          "environment", 
          "elements", 
          "body", 
          "materials", 
          "order", 
          "study", 
          "hydrogen", 
          "h storage"
        ], 
        "name": "Numerous chondritic impactors and oxidized magma ocean set Earth\u2019s volatile depletion", 
        "pagination": "20894", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1142058716"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-021-99240-w"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "34686749"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-021-99240-w", 
          "https://app.dimensions.ai/details/publication/pub.1142058716"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:42", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_887.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-021-99240-w"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-99240-w'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-99240-w'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-99240-w'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-99240-w'


     

    This table displays all metadata directly associated to this object as RDF triples.

    245 TRIPLES      21 PREDICATES      112 URIs      81 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-021-99240-w schema:about anzsrc-for:04
    2 anzsrc-for:0402
    3 anzsrc-for:0403
    4 schema:author N77cacda9ef494363a401fb944900236e
    5 schema:citation sg:pub.10.1007/978-3-642-70001-9_1
    6 sg:pub.10.1007/s11214-017-0387-z
    7 sg:pub.10.1023/a:1024629402715
    8 sg:pub.10.1023/a:1024645906350
    9 sg:pub.10.1038/35051550
    10 sg:pub.10.1038/35089010
    11 sg:pub.10.1038/nature00982
    12 sg:pub.10.1038/nature03360
    13 sg:pub.10.1038/nature04763
    14 sg:pub.10.1038/nature07465
    15 sg:pub.10.1038/nature08477
    16 sg:pub.10.1038/nature10201
    17 sg:pub.10.1038/nature12163
    18 sg:pub.10.1038/nature20830
    19 sg:pub.10.1038/ngeo2801
    20 sg:pub.10.1038/s41467-021-22035-0
    21 sg:pub.10.1038/s41561-017-0022-3
    22 sg:pub.10.1038/s41561-019-0354-2
    23 sg:pub.10.1038/s41561-020-0578-1
    24 sg:pub.10.1038/s41561-021-00733-0
    25 sg:pub.10.1038/s41586-020-2069-3
    26 sg:pub.10.1134/s0038094607010030
    27 schema:datePublished 2021-10-22
    28 schema:datePublishedReg 2021-10-22
    29 schema:description Earth’s surface environment is largely influenced by its budget of major volatile elements: carbon (C), nitrogen (N), and hydrogen (H). Although the volatiles on Earth are thought to have been delivered by chondritic materials, the elemental composition of the bulk silicate Earth (BSE) shows depletion in the order of N, C, and H. Previous studies have concluded that non-chondritic materials are needed for this depletion pattern. Here, we model the evolution of the volatile abundances in the atmosphere, oceans, crust, mantle, and core through the accretion history by considering elemental partitioning and impact erosion. We show that the BSE depletion pattern can be reproduced from continuous accretion of chondritic bodies by the partitioning of C into the core and H storage in the magma ocean in the main accretion stage and atmospheric erosion of N in the late accretion stage. This scenario requires a relatively oxidized magma ocean (log10fO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log _{10} f_{{\mathrm{O}}_2}$$\end{document}≳\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gtrsim$$\end{document}IW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{IW}}$$\end{document}-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-2$$\end{document}, where fO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{{\mathrm{O}}_2}$$\end{document} is the oxygen fugacity, IW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{IW}$$\end{document} is log10fO2IW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log _{10} f_{{\mathrm{O}}_2}^{\mathrm{IW}}$$\end{document}, and fO2IW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{{\mathrm{O}}_2}^{\mathrm{IW}}$$\end{document} is fO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{{\mathrm{O}}_2}$$\end{document} at the iron-wüstite buffer), the dominance of small impactors in the late accretion, and the storage of H and C in oceanic water and carbonate rocks in the late accretion stage, all of which are naturally expected from the formation of an Earth-sized planet in the habitable zone.
    30 schema:genre article
    31 schema:isAccessibleForFree true
    32 schema:isPartOf N9d99a43498a648c88959ba62c9bd2443
    33 Nbcb498174436431aa2061d20503bc5c3
    34 sg:journal.1045337
    35 schema:keywords Earth
    36 Earth's surface environment
    37 Earth-sized planets
    38 Ocean
    39 abundance
    40 accretion
    41 accretion history
    42 accretion stage
    43 atmosphere
    44 atmospheric erosion
    45 body
    46 budget
    47 bulk silicate Earth
    48 carbon
    49 chondritic bodies
    50 chondritic impactor
    51 chondritic material
    52 composition
    53 continuous accretion
    54 core
    55 crust
    56 depletion
    57 depletion patterns
    58 dominance
    59 elemental composition
    60 elemental partitioning
    61 elements
    62 environment
    63 erosion
    64 evolution
    65 formation
    66 h storage
    67 habitable zone
    68 history
    69 hydrogen
    70 impact erosion
    71 impactor
    72 late accretion
    73 late accretion stage
    74 magma ocean
    75 major volatile elements
    76 mantle
    77 materials
    78 nitrogen
    79 oceanic waters
    80 order
    81 partitioning
    82 patterns
    83 planets
    84 previous studies
    85 rocks
    86 scenarios
    87 silicate Earth
    88 small impactors
    89 stage
    90 storage
    91 study
    92 surface environment
    93 volatile abundances
    94 volatile depletion
    95 volatile elements
    96 volatiles
    97 water
    98 zone
    99 schema:name Numerous chondritic impactors and oxidized magma ocean set Earth’s volatile depletion
    100 schema:pagination 20894
    101 schema:productId N1b753a98ddc94ed9b66865e87f00bc74
    102 N51d01f2a5e8b4b9fbc1fabddd818adea
    103 N5492e83faeee419d8c79666729e017d4
    104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142058716
    105 https://doi.org/10.1038/s41598-021-99240-w
    106 schema:sdDatePublished 2022-12-01T06:42
    107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    108 schema:sdPublisher Nd79c5753a1c94d54bb9312deefd472d2
    109 schema:url https://doi.org/10.1038/s41598-021-99240-w
    110 sgo:license sg:explorer/license/
    111 sgo:sdDataset articles
    112 rdf:type schema:ScholarlyArticle
    113 N1b753a98ddc94ed9b66865e87f00bc74 schema:name doi
    114 schema:value 10.1038/s41598-021-99240-w
    115 rdf:type schema:PropertyValue
    116 N31149ed2cd4946538cf780b7ab94cd06 rdf:first sg:person.011475104271.00
    117 rdf:rest N83ff44e00c2b41c58331e45ae0cc20ec
    118 N51d01f2a5e8b4b9fbc1fabddd818adea schema:name pubmed_id
    119 schema:value 34686749
    120 rdf:type schema:PropertyValue
    121 N5492e83faeee419d8c79666729e017d4 schema:name dimensions_id
    122 schema:value pub.1142058716
    123 rdf:type schema:PropertyValue
    124 N77cacda9ef494363a401fb944900236e rdf:first sg:person.015043704554.76
    125 rdf:rest Nbdb25fff2ac842048de5a6e392d381c9
    126 N83ff44e00c2b41c58331e45ae0cc20ec rdf:first sg:person.012006727630.16
    127 rdf:rest rdf:nil
    128 N9d99a43498a648c88959ba62c9bd2443 schema:volumeNumber 11
    129 rdf:type schema:PublicationVolume
    130 Nbcb498174436431aa2061d20503bc5c3 schema:issueNumber 1
    131 rdf:type schema:PublicationIssue
    132 Nbdb25fff2ac842048de5a6e392d381c9 rdf:first sg:person.015501011137.68
    133 rdf:rest N31149ed2cd4946538cf780b7ab94cd06
    134 Nd79c5753a1c94d54bb9312deefd472d2 schema:name Springer Nature - SN SciGraph project
    135 rdf:type schema:Organization
    136 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    137 schema:name Earth Sciences
    138 rdf:type schema:DefinedTerm
    139 anzsrc-for:0402 schema:inDefinedTermSet anzsrc-for:
    140 schema:name Geochemistry
    141 rdf:type schema:DefinedTerm
    142 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
    143 schema:name Geology
    144 rdf:type schema:DefinedTerm
    145 sg:grant.6957909 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-021-99240-w
    146 rdf:type schema:MonetaryGrant
    147 sg:grant.7540432 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-021-99240-w
    148 rdf:type schema:MonetaryGrant
    149 sg:grant.8536891 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-021-99240-w
    150 rdf:type schema:MonetaryGrant
    151 sg:journal.1045337 schema:issn 2045-2322
    152 schema:name Scientific Reports
    153 schema:publisher Springer Nature
    154 rdf:type schema:Periodical
    155 sg:person.011475104271.00 schema:affiliation grid-institutes:grid.32197.3e
    156 schema:familyName Genda
    157 schema:givenName Hidenori
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011475104271.00
    159 rdf:type schema:Person
    160 sg:person.012006727630.16 schema:affiliation grid-institutes:grid.32197.3e
    161 schema:familyName Ohta
    162 schema:givenName Kenji
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012006727630.16
    164 rdf:type schema:Person
    165 sg:person.015043704554.76 schema:affiliation grid-institutes:grid.32197.3e
    166 schema:familyName Sakuraba
    167 schema:givenName Haruka
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015043704554.76
    169 rdf:type schema:Person
    170 sg:person.015501011137.68 schema:affiliation grid-institutes:grid.32197.3e
    171 schema:familyName Kurokawa
    172 schema:givenName Hiroyuki
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015501011137.68
    174 rdf:type schema:Person
    175 sg:pub.10.1007/978-3-642-70001-9_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046857052
    176 https://doi.org/10.1007/978-3-642-70001-9_1
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s11214-017-0387-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1091101466
    179 https://doi.org/10.1007/s11214-017-0387-z
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1023/a:1024629402715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001547167
    182 https://doi.org/10.1023/a:1024629402715
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1023/a:1024645906350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040797030
    185 https://doi.org/10.1023/a:1024645906350
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/35051550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037786729
    188 https://doi.org/10.1038/35051550
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/35089010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007933173
    191 https://doi.org/10.1038/35089010
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/nature00982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032963935
    194 https://doi.org/10.1038/nature00982
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/nature03360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042387026
    197 https://doi.org/10.1038/nature03360
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/nature04763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021302942
    200 https://doi.org/10.1038/nature04763
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/nature07465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052586915
    203 https://doi.org/10.1038/nature07465
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/nature08477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042977464
    206 https://doi.org/10.1038/nature08477
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/nature10201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030609148
    209 https://doi.org/10.1038/nature10201
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/nature12163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002044847
    212 https://doi.org/10.1038/nature12163
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/nature20830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074211290
    215 https://doi.org/10.1038/nature20830
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/ngeo2801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050310503
    218 https://doi.org/10.1038/ngeo2801
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/s41467-021-22035-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137921546
    221 https://doi.org/10.1038/s41467-021-22035-0
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/s41561-017-0022-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093139685
    224 https://doi.org/10.1038/s41561-017-0022-3
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/s41561-019-0354-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113811333
    227 https://doi.org/10.1038/s41561-019-0354-2
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/s41561-020-0578-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127686671
    230 https://doi.org/10.1038/s41561-020-0578-1
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/s41561-021-00733-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137878971
    233 https://doi.org/10.1038/s41561-021-00733-0
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/s41586-020-2069-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125550920
    236 https://doi.org/10.1038/s41586-020-2069-3
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1134/s0038094607010030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037585819
    239 https://doi.org/10.1134/s0038094607010030
    240 rdf:type schema:CreativeWork
    241 grid-institutes:grid.32197.3e schema:alternateName Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, 152-8551, Tokyo, Japan
    242 Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, 152-8550, Tokyo, Japan
    243 schema:name Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, 152-8551, Tokyo, Japan
    244 Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, 152-8550, Tokyo, Japan
    245 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...