Refinement of microbiota analysis of specimens from patients with respiratory infections using next-generation sequencing View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-10-01

AUTHORS

Hiroaki Ikegami, Shingo Noguchi, Kazumasa Fukuda, Kentaro Akata, Kei Yamasaki, Toshinori Kawanami, Hiroshi Mukae, Kazuhiro Yatera

ABSTRACT

Next-generation sequencing (NGS) technologies have been applied in bacterial flora analysis. However, there is no standardized protocol, and the optimal clustering threshold for estimating bacterial species in respiratory infection specimens is unknown. This study was conducted to investigate the optimal threshold for clustering 16S ribosomal RNA gene sequences into operational taxonomic units (OTUs) by comparing the results of NGS technology with those of the Sanger method, which has a higher accuracy of sequence per single read than NGS technology. This study included 45 patients with pneumonia with aspiration risks and 35 patients with lung abscess. Compared to Sanger method, the concordance rates of NGS technology (clustered at 100%, 99%, and 97% homology) with the predominant phylotype were 78.8%, 71.3%, and 65.0%, respectively. With respect to the specimens dominated by the Streptococcus mitis group, containing several important causative agents of pneumonia, Bray Curtis dissimilarity revealed that the OTUs obtained at 100% clustering threshold (versus those obtained at 99% and 97% thresholds; medians of 0.35, 0.69, and 0.71, respectively) were more similar to those obtained by the Sanger method, with statistical significance (p < 0.05). Clustering with 100% sequence identity is necessary when analyzing the microbiota of respiratory infections using NGS technology. More... »

PAGES

19534

References to SciGraph publications

  • 2016-05-23. DADA2: High-resolution sample inference from Illumina amplicon data in NATURE METHODS
  • 2015-12-09. The microbiome quality control project: baseline study design and future directions in GENOME BIOLOGY
  • 2020-11-21. Uncovering the microbiota in renal cell carcinoma tissue using 16S rRNA gene sequencing in JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY
  • 2017-10-02. Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium in NATURE BIOTECHNOLOGY
  • 1987-04. Compositional dissimilarity as a robust measure of ecological distance in PLANT ECOLOGY
  • 2018-10-05. Corynebacteria as a cause of pulmonary infection: a case series and literature review in PNEUMONIA
  • 2016-05-11. The significance of oral streptococci in patients with pneumonia with risk factors for aspiration: the bacterial floral analysis of 16S ribosomal RNA gene using bronchoalveolar lavage fluid in BMC PULMONARY MEDICINE
  • 2020-10-01. Comparative analysis of the tonsillar microbiota in IgA nephropathy and other glomerular diseases in SCIENTIFIC REPORTS
  • 2020-09-22. Assessing the bacterial diversity and functional profiles of the River Yamuna using Illumina MiSeq sequencing in ARCHIVES OF MICROBIOLOGY
  • 2020-01-15. Diagnosis of severe community-acquired pneumonia caused by Acinetobacter baumannii through next-generation sequencing: a case report in BMC INFECTIOUS DISEASES
  • 2017-06-13. Targeted next-generation sequencing of the 16S-23S rRNA region for culture-independent bacterial identification - increased discrimination of closely related species in SCIENTIFIC REPORTS
  • 2019-11-06. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis in NATURE COMMUNICATIONS
  • 2019-03-27. Clinical metagenomics in NATURE REVIEWS GENETICS
  • 2015-10-26. The clinical features of respiratory infections caused by the Streptococcus anginosus group in BMC PULMONARY MEDICINE
  • 2019-12-23. Dynamics of microbiota during mechanical ventilation in aspiration pneumonia in BMC PULMONARY MEDICINE
  • 2008-10-09. Next-generation DNA sequencing in NATURE BIOTECHNOLOGY
  • 2020-07-24. Identification of Streptococcus pneumoniae and other Mitis streptococci: importance of molecular methods in EUROPEAN JOURNAL OF CLINICAL MICROBIOLOGY & INFECTIOUS DISEASES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-021-98985-8

    DOI

    http://dx.doi.org/10.1038/s41598-021-98985-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1141548184

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/34599245


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Cardiorespiratory Medicine and Haematology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged, 80 and over", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Disease Susceptibility", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Library", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "High-Throughput Nucleotide Sequencing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metagenome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metagenomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microbiota", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Respiratory Mucosa", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Respiratory Tract Infections", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retrospective Studies", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, 807-8555, Kitakyushu-city, Fukuoka, Japan", 
              "id": "http://www.grid.ac/institutes/grid.271052.3", 
              "name": [
                "Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, 807-8555, Kitakyushu-city, Fukuoka, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ikegami", 
            "givenName": "Hiroaki", 
            "id": "sg:person.014563023503.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014563023503.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, 807-8555, Kitakyushu-city, Fukuoka, Japan", 
              "id": "http://www.grid.ac/institutes/grid.271052.3", 
              "name": [
                "Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, 807-8555, Kitakyushu-city, Fukuoka, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Noguchi", 
            "givenName": "Shingo", 
            "id": "sg:person.01347347515.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347347515.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Microbiology, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan", 
              "id": "http://www.grid.ac/institutes/grid.271052.3", 
              "name": [
                "Department of Microbiology, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fukuda", 
            "givenName": "Kazumasa", 
            "id": "sg:person.01150161651.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150161651.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, 807-8555, Kitakyushu-city, Fukuoka, Japan", 
              "id": "http://www.grid.ac/institutes/grid.271052.3", 
              "name": [
                "Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, 807-8555, Kitakyushu-city, Fukuoka, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Akata", 
            "givenName": "Kentaro", 
            "id": "sg:person.01152247577.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152247577.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, 807-8555, Kitakyushu-city, Fukuoka, Japan", 
              "id": "http://www.grid.ac/institutes/grid.271052.3", 
              "name": [
                "Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, 807-8555, Kitakyushu-city, Fukuoka, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yamasaki", 
            "givenName": "Kei", 
            "id": "sg:person.01347162207.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347162207.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, 807-8555, Kitakyushu-city, Fukuoka, Japan", 
              "id": "http://www.grid.ac/institutes/grid.271052.3", 
              "name": [
                "Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, 807-8555, Kitakyushu-city, Fukuoka, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kawanami", 
            "givenName": "Toshinori", 
            "id": "sg:person.0623556107.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623556107.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan", 
              "id": "http://www.grid.ac/institutes/grid.174567.6", 
              "name": [
                "Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mukae", 
            "givenName": "Hiroshi", 
            "id": "sg:person.01143125277.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143125277.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, 807-8555, Kitakyushu-city, Fukuoka, Japan", 
              "id": "http://www.grid.ac/institutes/grid.271052.3", 
              "name": [
                "Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, 807-8555, Kitakyushu-city, Fukuoka, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yatera", 
            "givenName": "Kazuhiro", 
            "id": "sg:person.01032646234.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032646234.50"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s41598-020-73035-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131331122", 
              "https://doi.org/10.1038/s41598-020-73035-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12879-019-4733-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124106012", 
              "https://doi.org/10.1186/s12879-019-4733-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12890-016-0235-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034830793", 
              "https://doi.org/10.1186/s12890-016-0235-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12890-019-1021-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123606702", 
              "https://doi.org/10.1186/s12890-019-1021-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3981", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092061423", 
              "https://doi.org/10.1038/nbt.3981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00038687", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028140832", 
              "https://doi.org/10.1007/bf00038687"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00203-020-02045-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131077523", 
              "https://doi.org/10.1007/s00203-020-02045-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41576-019-0113-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113006301", 
              "https://doi.org/10.1038/s41576-019-0113-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-015-0841-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052977184", 
              "https://doi.org/10.1186/s13059-015-0841-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00432-020-03462-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1132798420", 
              "https://doi.org/10.1007/s00432-020-03462-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-03458-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085916356", 
              "https://doi.org/10.1038/s41598-017-03458-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005954516", 
              "https://doi.org/10.1038/nbt1486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-13036-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122332499", 
              "https://doi.org/10.1038/s41467-019-13036-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3869", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016631324", 
              "https://doi.org/10.1038/nmeth.3869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s41479-018-0054-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107433579", 
              "https://doi.org/10.1186/s41479-018-0054-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12890-015-0128-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030425352", 
              "https://doi.org/10.1186/s12890-015-0128-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10096-020-03991-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1129635947", 
              "https://doi.org/10.1007/s10096-020-03991-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-10-01", 
        "datePublishedReg": "2021-10-01", 
        "description": "Next-generation sequencing (NGS) technologies have been applied in bacterial flora analysis. However, there is no standardized protocol, and the optimal clustering threshold for estimating bacterial species in respiratory infection specimens is unknown. This study was conducted to investigate the optimal threshold for clustering 16S ribosomal RNA gene sequences into operational taxonomic units (OTUs) by comparing the results of NGS technology with those of the Sanger method, which has a higher accuracy of sequence per single read than NGS technology. This study included 45 patients with pneumonia with aspiration risks and 35 patients with lung abscess. Compared to Sanger method, the concordance rates of NGS technology (clustered at 100%, 99%, and 97% homology) with the predominant phylotype were 78.8%, 71.3%, and 65.0%, respectively. With respect to the specimens dominated by the Streptococcus mitis group, containing several important causative agents of pneumonia, Bray Curtis dissimilarity revealed that the OTUs obtained at 100% clustering threshold (versus those obtained at 99% and 97% thresholds; medians of 0.35, 0.69, and 0.71, respectively) were more similar to those obtained by the Sanger method, with statistical significance (p\u2009<\u20090.05). Clustering with 100% sequence identity is necessary when analyzing the microbiota of respiratory infections using NGS technology.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-021-98985-8", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "keywords": [
          "respiratory infections", 
          "important causative agent", 
          "Streptococcus mitis group", 
          "Sanger method", 
          "aspiration risk", 
          "concordance rate", 
          "patients", 
          "microbiota analysis", 
          "standardized protocol", 
          "statistical significance", 
          "next-generation sequencing", 
          "causative agent", 
          "pneumonia", 
          "infection", 
          "mitis group", 
          "flora analysis", 
          "bacterial flora analysis", 
          "optimal clustering threshold", 
          "lung", 
          "NGS technologies", 
          "bacterial species", 
          "specimens", 
          "microbiota", 
          "optimal threshold", 
          "risk", 
          "study", 
          "next-generation sequencing technologies", 
          "threshold", 
          "group", 
          "agents", 
          "sequencing", 
          "Bray-Curtis dissimilarity", 
          "significance", 
          "protocol", 
          "operational taxonomic units", 
          "rate", 
          "analysis", 
          "predominant phylotypes", 
          "sequencing technologies", 
          "method", 
          "sequence identity", 
          "gene sequences", 
          "units", 
          "RNA gene sequences", 
          "ribosomal RNA gene sequences", 
          "results", 
          "sequence", 
          "single read", 
          "taxonomic units", 
          "respect", 
          "clustering threshold", 
          "species", 
          "accuracy", 
          "refinement", 
          "high accuracy", 
          "phylotypes", 
          "technology", 
          "reads", 
          "dissimilarity", 
          "identity"
        ], 
        "name": "Refinement of microbiota analysis of specimens from patients with respiratory infections using next-generation sequencing", 
        "pagination": "19534", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1141548184"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-021-98985-8"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "34599245"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-021-98985-8", 
          "https://app.dimensions.ai/details/publication/pub.1141548184"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:06", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_903.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-021-98985-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-98985-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-98985-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-98985-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-98985-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    302 TRIPLES      21 PREDICATES      117 URIs      92 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-021-98985-8 schema:about N103be2555633475d931fc67b2f91a0cd
    2 N19ea523de7554cf3a29bb53cade77fbb
    3 N20e854fc61924a5497fdf8d0c8b2061a
    4 N31868ddf100a4615ac5034b6b8956be1
    5 N60c1b8c0251e40d6a95f55539a7cca80
    6 N863d85697014484997e9b04d3b806bc0
    7 N9dfb6ee8830f41699099c017c687b9fe
    8 Na539cf23171f40ac9fa00d1eb6fdbff8
    9 Nabafd6eac47c4ea0a97541f9497c3a10
    10 Nba73e6ea7bb3452cb0eafdb0c1c63dbc
    11 Nbeeb1c91032748db8fd725d8494aec47
    12 Nc30fa0c431fb4407be67d4104fc0455a
    13 Nd63c1e95f81b40538421f1eb5f82afe1
    14 Ne35b82ec02d24f0c9ce82131e7d005d7
    15 Nfa50589bf40b4c1a8a33f11c707326a0
    16 anzsrc-for:11
    17 anzsrc-for:1102
    18 schema:author N677ff068b4e34fe5a47530b43d13248c
    19 schema:citation sg:pub.10.1007/bf00038687
    20 sg:pub.10.1007/s00203-020-02045-0
    21 sg:pub.10.1007/s00432-020-03462-w
    22 sg:pub.10.1007/s10096-020-03991-9
    23 sg:pub.10.1038/nbt.3981
    24 sg:pub.10.1038/nbt1486
    25 sg:pub.10.1038/nmeth.3869
    26 sg:pub.10.1038/s41467-019-13036-1
    27 sg:pub.10.1038/s41576-019-0113-7
    28 sg:pub.10.1038/s41598-017-03458-6
    29 sg:pub.10.1038/s41598-020-73035-x
    30 sg:pub.10.1186/s12879-019-4733-5
    31 sg:pub.10.1186/s12890-015-0128-6
    32 sg:pub.10.1186/s12890-016-0235-z
    33 sg:pub.10.1186/s12890-019-1021-5
    34 sg:pub.10.1186/s13059-015-0841-8
    35 sg:pub.10.1186/s41479-018-0054-5
    36 schema:datePublished 2021-10-01
    37 schema:datePublishedReg 2021-10-01
    38 schema:description Next-generation sequencing (NGS) technologies have been applied in bacterial flora analysis. However, there is no standardized protocol, and the optimal clustering threshold for estimating bacterial species in respiratory infection specimens is unknown. This study was conducted to investigate the optimal threshold for clustering 16S ribosomal RNA gene sequences into operational taxonomic units (OTUs) by comparing the results of NGS technology with those of the Sanger method, which has a higher accuracy of sequence per single read than NGS technology. This study included 45 patients with pneumonia with aspiration risks and 35 patients with lung abscess. Compared to Sanger method, the concordance rates of NGS technology (clustered at 100%, 99%, and 97% homology) with the predominant phylotype were 78.8%, 71.3%, and 65.0%, respectively. With respect to the specimens dominated by the Streptococcus mitis group, containing several important causative agents of pneumonia, Bray Curtis dissimilarity revealed that the OTUs obtained at 100% clustering threshold (versus those obtained at 99% and 97% thresholds; medians of 0.35, 0.69, and 0.71, respectively) were more similar to those obtained by the Sanger method, with statistical significance (p < 0.05). Clustering with 100% sequence identity is necessary when analyzing the microbiota of respiratory infections using NGS technology.
    39 schema:genre article
    40 schema:isAccessibleForFree true
    41 schema:isPartOf Ne401d1134a4c4ce9bd7b96f5c5e4daa1
    42 Nf661d87fc19b48acb59ced45a3869898
    43 sg:journal.1045337
    44 schema:keywords Bray-Curtis dissimilarity
    45 NGS technologies
    46 RNA gene sequences
    47 Sanger method
    48 Streptococcus mitis group
    49 accuracy
    50 agents
    51 analysis
    52 aspiration risk
    53 bacterial flora analysis
    54 bacterial species
    55 causative agent
    56 clustering threshold
    57 concordance rate
    58 dissimilarity
    59 flora analysis
    60 gene sequences
    61 group
    62 high accuracy
    63 identity
    64 important causative agent
    65 infection
    66 lung
    67 method
    68 microbiota
    69 microbiota analysis
    70 mitis group
    71 next-generation sequencing
    72 next-generation sequencing technologies
    73 operational taxonomic units
    74 optimal clustering threshold
    75 optimal threshold
    76 patients
    77 phylotypes
    78 pneumonia
    79 predominant phylotypes
    80 protocol
    81 rate
    82 reads
    83 refinement
    84 respect
    85 respiratory infections
    86 results
    87 ribosomal RNA gene sequences
    88 risk
    89 sequence
    90 sequence identity
    91 sequencing
    92 sequencing technologies
    93 significance
    94 single read
    95 species
    96 specimens
    97 standardized protocol
    98 statistical significance
    99 study
    100 taxonomic units
    101 technology
    102 threshold
    103 units
    104 schema:name Refinement of microbiota analysis of specimens from patients with respiratory infections using next-generation sequencing
    105 schema:pagination 19534
    106 schema:productId N133a59c485444d6b876dd9dbb2e74f7e
    107 N278655d684994859b30d73fc680fdc5c
    108 N6c3bc799ed3144a5b6acba2ff6a6889c
    109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141548184
    110 https://doi.org/10.1038/s41598-021-98985-8
    111 schema:sdDatePublished 2022-09-02T16:06
    112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    113 schema:sdPublisher N982529f21d3c4ba1bbbe4faf1e6c6b15
    114 schema:url https://doi.org/10.1038/s41598-021-98985-8
    115 sgo:license sg:explorer/license/
    116 sgo:sdDataset articles
    117 rdf:type schema:ScholarlyArticle
    118 N103be2555633475d931fc67b2f91a0cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Male
    120 rdf:type schema:DefinedTerm
    121 N133a59c485444d6b876dd9dbb2e74f7e schema:name pubmed_id
    122 schema:value 34599245
    123 rdf:type schema:PropertyValue
    124 N19ea523de7554cf3a29bb53cade77fbb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Respiratory Tract Infections
    126 rdf:type schema:DefinedTerm
    127 N20e854fc61924a5497fdf8d0c8b2061a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Respiratory Mucosa
    129 rdf:type schema:DefinedTerm
    130 N278655d684994859b30d73fc680fdc5c schema:name doi
    131 schema:value 10.1038/s41598-021-98985-8
    132 rdf:type schema:PropertyValue
    133 N2f6e178502074b988c1357f7d288a095 rdf:first sg:person.01152247577.13
    134 rdf:rest Nc36976d8c580494291d9bd3ad59e1cde
    135 N31868ddf100a4615ac5034b6b8956be1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Gene Library
    137 rdf:type schema:DefinedTerm
    138 N60c1b8c0251e40d6a95f55539a7cca80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Aged
    140 rdf:type schema:DefinedTerm
    141 N6245bc2c52cd4298ab3e67e00d736c27 rdf:first sg:person.01347347515.79
    142 rdf:rest N922a555dee324f0ea5280d0316b886a1
    143 N677ff068b4e34fe5a47530b43d13248c rdf:first sg:person.014563023503.90
    144 rdf:rest N6245bc2c52cd4298ab3e67e00d736c27
    145 N6c3bc799ed3144a5b6acba2ff6a6889c schema:name dimensions_id
    146 schema:value pub.1141548184
    147 rdf:type schema:PropertyValue
    148 N84f038613dcf4e8f8021e0781b976f93 rdf:first sg:person.0623556107.50
    149 rdf:rest Nc31938045af24588ad894a84e7ebc2eb
    150 N863d85697014484997e9b04d3b806bc0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Metagenomics
    152 rdf:type schema:DefinedTerm
    153 N8c0c96d234bc41059331dc62f6469249 rdf:first sg:person.01032646234.50
    154 rdf:rest rdf:nil
    155 N922a555dee324f0ea5280d0316b886a1 rdf:first sg:person.01150161651.18
    156 rdf:rest N2f6e178502074b988c1357f7d288a095
    157 N982529f21d3c4ba1bbbe4faf1e6c6b15 schema:name Springer Nature - SN SciGraph project
    158 rdf:type schema:Organization
    159 N9dfb6ee8830f41699099c017c687b9fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Aged, 80 and over
    161 rdf:type schema:DefinedTerm
    162 Na539cf23171f40ac9fa00d1eb6fdbff8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Disease Susceptibility
    164 rdf:type schema:DefinedTerm
    165 Nabafd6eac47c4ea0a97541f9497c3a10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Microbiota
    167 rdf:type schema:DefinedTerm
    168 Nba73e6ea7bb3452cb0eafdb0c1c63dbc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name High-Throughput Nucleotide Sequencing
    170 rdf:type schema:DefinedTerm
    171 Nbeeb1c91032748db8fd725d8494aec47 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name Middle Aged
    173 rdf:type schema:DefinedTerm
    174 Nc30fa0c431fb4407be67d4104fc0455a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Metagenome
    176 rdf:type schema:DefinedTerm
    177 Nc31938045af24588ad894a84e7ebc2eb rdf:first sg:person.01143125277.28
    178 rdf:rest N8c0c96d234bc41059331dc62f6469249
    179 Nc36976d8c580494291d9bd3ad59e1cde rdf:first sg:person.01347162207.34
    180 rdf:rest N84f038613dcf4e8f8021e0781b976f93
    181 Nd63c1e95f81b40538421f1eb5f82afe1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Female
    183 rdf:type schema:DefinedTerm
    184 Ne35b82ec02d24f0c9ce82131e7d005d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name Retrospective Studies
    186 rdf:type schema:DefinedTerm
    187 Ne401d1134a4c4ce9bd7b96f5c5e4daa1 schema:volumeNumber 11
    188 rdf:type schema:PublicationVolume
    189 Nf661d87fc19b48acb59ced45a3869898 schema:issueNumber 1
    190 rdf:type schema:PublicationIssue
    191 Nfa50589bf40b4c1a8a33f11c707326a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    192 schema:name Humans
    193 rdf:type schema:DefinedTerm
    194 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    195 schema:name Medical and Health Sciences
    196 rdf:type schema:DefinedTerm
    197 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
    198 schema:name Cardiorespiratory Medicine and Haematology
    199 rdf:type schema:DefinedTerm
    200 sg:journal.1045337 schema:issn 2045-2322
    201 schema:name Scientific Reports
    202 schema:publisher Springer Nature
    203 rdf:type schema:Periodical
    204 sg:person.01032646234.50 schema:affiliation grid-institutes:grid.271052.3
    205 schema:familyName Yatera
    206 schema:givenName Kazuhiro
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032646234.50
    208 rdf:type schema:Person
    209 sg:person.01143125277.28 schema:affiliation grid-institutes:grid.174567.6
    210 schema:familyName Mukae
    211 schema:givenName Hiroshi
    212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143125277.28
    213 rdf:type schema:Person
    214 sg:person.01150161651.18 schema:affiliation grid-institutes:grid.271052.3
    215 schema:familyName Fukuda
    216 schema:givenName Kazumasa
    217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150161651.18
    218 rdf:type schema:Person
    219 sg:person.01152247577.13 schema:affiliation grid-institutes:grid.271052.3
    220 schema:familyName Akata
    221 schema:givenName Kentaro
    222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152247577.13
    223 rdf:type schema:Person
    224 sg:person.01347162207.34 schema:affiliation grid-institutes:grid.271052.3
    225 schema:familyName Yamasaki
    226 schema:givenName Kei
    227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347162207.34
    228 rdf:type schema:Person
    229 sg:person.01347347515.79 schema:affiliation grid-institutes:grid.271052.3
    230 schema:familyName Noguchi
    231 schema:givenName Shingo
    232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347347515.79
    233 rdf:type schema:Person
    234 sg:person.014563023503.90 schema:affiliation grid-institutes:grid.271052.3
    235 schema:familyName Ikegami
    236 schema:givenName Hiroaki
    237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014563023503.90
    238 rdf:type schema:Person
    239 sg:person.0623556107.50 schema:affiliation grid-institutes:grid.271052.3
    240 schema:familyName Kawanami
    241 schema:givenName Toshinori
    242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623556107.50
    243 rdf:type schema:Person
    244 sg:pub.10.1007/bf00038687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028140832
    245 https://doi.org/10.1007/bf00038687
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1007/s00203-020-02045-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131077523
    248 https://doi.org/10.1007/s00203-020-02045-0
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1007/s00432-020-03462-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1132798420
    251 https://doi.org/10.1007/s00432-020-03462-w
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1007/s10096-020-03991-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129635947
    254 https://doi.org/10.1007/s10096-020-03991-9
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/nbt.3981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092061423
    257 https://doi.org/10.1038/nbt.3981
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/nbt1486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005954516
    260 https://doi.org/10.1038/nbt1486
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/nmeth.3869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016631324
    263 https://doi.org/10.1038/nmeth.3869
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1038/s41467-019-13036-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122332499
    266 https://doi.org/10.1038/s41467-019-13036-1
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1038/s41576-019-0113-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113006301
    269 https://doi.org/10.1038/s41576-019-0113-7
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/s41598-017-03458-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085916356
    272 https://doi.org/10.1038/s41598-017-03458-6
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/s41598-020-73035-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1131331122
    275 https://doi.org/10.1038/s41598-020-73035-x
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1186/s12879-019-4733-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124106012
    278 https://doi.org/10.1186/s12879-019-4733-5
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1186/s12890-015-0128-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030425352
    281 https://doi.org/10.1186/s12890-015-0128-6
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1186/s12890-016-0235-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1034830793
    284 https://doi.org/10.1186/s12890-016-0235-z
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1186/s12890-019-1021-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123606702
    287 https://doi.org/10.1186/s12890-019-1021-5
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1186/s13059-015-0841-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052977184
    290 https://doi.org/10.1186/s13059-015-0841-8
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1186/s41479-018-0054-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107433579
    293 https://doi.org/10.1186/s41479-018-0054-5
    294 rdf:type schema:CreativeWork
    295 grid-institutes:grid.174567.6 schema:alternateName Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
    296 schema:name Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
    297 rdf:type schema:Organization
    298 grid-institutes:grid.271052.3 schema:alternateName Department of Microbiology, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
    299 Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, 807-8555, Kitakyushu-city, Fukuoka, Japan
    300 schema:name Department of Microbiology, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
    301 Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, 807-8555, Kitakyushu-city, Fukuoka, Japan
    302 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...