Emergence of universality in the transmission dynamics of COVID-19 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-09-23

AUTHORS

Ayan Paul, Jayanta Kumar Bhattacharjee, Akshay Pal, Sagar Chakraborty

ABSTRACT

The complexities involved in modelling the transmission dynamics of COVID-19 has been a roadblock in achieving predictability in the spread and containment of the disease. In addition to understanding the modes of transmission, the effectiveness of the mitigation methods also needs to be built into any effective model for making such predictions. We show that such complexities can be circumvented by appealing to scaling principles which lead to the emergence of universality in the transmission dynamics of the disease. The ensuing data collapse renders the transmission dynamics largely independent of geopolitical variations, the effectiveness of various mitigation strategies, population demographics, etc. We propose a simple two-parameter model-the Blue Sky model-and show that one class of transmission dynamics can be explained by a solution that lives at the edge of a blue sky bifurcation. In addition, the data collapse leads to an enhanced degree of predictability in the disease spread for several geographical scales which can also be realized in a model-independent manner as we show using a deep neural network. The methodology adopted in this work can potentially be applied to the transmission of other infectious diseases and new universality classes may be found. The predictability in transmission dynamics and the simplicity of our methodology can help in building policies for exit strategies and mitigation methods during a pandemic. More... »

PAGES

18891

References to SciGraph publications

  • 2020-06-22. The end of social confinement and COVID-19 re-emergence risk in NATURE HUMAN BEHAVIOUR
  • 2020-09-25. Solvable delay model for epidemic spreading: the case of Covid-19 in Italy in SCIENTIFIC REPORTS
  • 2021-02-17. Reduction in mobility and COVID-19 transmission in NATURE COMMUNICATIONS
  • 2020-07-09. Revealing COVID-19 transmission in Australia by SARS-CoV-2 genome sequencing and agent-based modeling in NATURE MEDICINE
  • 2020-02-03. SciPy 1.0: fundamental algorithms for scientific computing in Python in NATURE METHODS
  • 2007-03. From neuron to neural networks dynamics in THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS
  • 2008. Compartmental Models in Epidemiology in MATHEMATICAL EPIDEMIOLOGY
  • 2008. An Introduction to Stochastic Epidemic Models in MATHEMATICAL EPIDEMIOLOGY
  • 2020-03-25. COVID-19 containment: China provides important lessons for global response in FRONTIERS OF MEDICINE
  • 2020-08-19. Generalized logistic growth modeling of the COVID-19 outbreak: comparing the dynamics in the 29 provinces in China and in the rest of the world in NONLINEAR DYNAMICS
  • 2021-02-27. Universal Epidemic Curve for COVID-19 and Its Usage for Forecasting in TRANSACTIONS OF THE INDIAN NATIONAL ACADEMY OF ENGINEERING
  • 2020-05-15. Reconstructing and forecasting the COVID-19 epidemic in the United States using a 5-parameter logistic growth model in GLOBAL HEALTH RESEARCH AND POLICY
  • 2020-11-11. Modelling transmission and control of the COVID-19 pandemic in Australia in NATURE COMMUNICATIONS
  • 2021-03-05. Spatiotemporal heterogeneity and its determinants of COVID-19 transmission in typical labor export provinces of China in BMC INFECTIOUS DISEASES
  • 2020-08-05. Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19 in NATURE HUMAN BEHAVIOUR
  • 2020-06-08. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe in NATURE
  • 2019-03-05. Consequences of delays and imperfect implementation of isolation in epidemic control in SCIENTIFIC REPORTS
  • 2021-03-25. Human mobility and poverty as key drivers of COVID-19 transmission and control in BMC PUBLIC HEALTH
  • 2020-04-02. Special report: The simulations driving the world’s response to COVID-19 in NATURE
  • 2020-09-23. Second wave COVID-19 pandemics in Europe: a temporal playbook in SCIENTIFIC REPORTS
  • 2012-11-05. A data-driven epidemiological prediction method for dengue outbreaks using local and remote sensing data in BMC MEDICAL INFORMATICS AND DECISION MAKING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-021-98302-3

    DOI

    http://dx.doi.org/10.1038/s41598-021-98302-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1141320046

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/34556753


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Public Health and Health Services", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "COVID-19", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Disease Transmission, Infectious", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Statistical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Theoretical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pandemics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "SARS-CoV-2", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Physik, Humboldt-Universit\u00e4t zu Berlin, 12489 Berlin, Germany", 
              "id": "http://www.grid.ac/institutes/grid.7468.d", 
              "name": [
                "Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany", 
                "Institut f\u00fcr Physik, Humboldt-Universit\u00e4t zu Berlin, 12489 Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Paul", 
            "givenName": "Ayan", 
            "id": "sg:person.016214036561.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016214036561.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Indian Institute for Cultivation of Science, Jadavpur, Kolkata 700032 India", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Indian Institute for Cultivation of Science, Jadavpur, Kolkata 700032 India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bhattacharjee", 
            "givenName": "Jayanta Kumar", 
            "id": "sg:person.015365735162.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365735162.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Indian Institute for Cultivation of Science, Jadavpur, Kolkata 700032 India", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Indian Institute for Cultivation of Science, Jadavpur, Kolkata 700032 India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pal", 
            "givenName": "Akshay", 
            "id": "sg:person.07357001047.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07357001047.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 India", 
              "id": "http://www.grid.ac/institutes/grid.417965.8", 
              "name": [
                "Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chakraborty", 
            "givenName": "Sagar", 
            "id": "sg:person.01075117510.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075117510.01"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1140/epjst/e2007-00058-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048315334", 
              "https://doi.org/10.1140/epjst/e2007-00058-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41592-019-0686-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124547608", 
              "https://doi.org/10.1038/s41592-019-0686-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s41403-021-00210-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1135805081", 
              "https://doi.org/10.1007/s41403-021-00210-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41562-020-0931-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1129878862", 
              "https://doi.org/10.1038/s41562-020-0931-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1472-6947-12-124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038482820", 
              "https://doi.org/10.1186/1472-6947-12-124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12879-021-05926-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1136047311", 
              "https://doi.org/10.1186/s12879-021-05926-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-78911-6_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002103213", 
              "https://doi.org/10.1007/978-3-540-78911-6_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41562-020-0908-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1128661661", 
              "https://doi.org/10.1038/s41562-020-0908-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-020-72529-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131160182", 
              "https://doi.org/10.1038/s41598-020-72529-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11071-020-05862-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1130179101", 
              "https://doi.org/10.1007/s11071-020-05862-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-78911-6_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018871190", 
              "https://doi.org/10.1007/978-3-540-78911-6_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12889-021-10561-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1136669254", 
              "https://doi.org/10.1186/s12889-021-10561-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41591-020-1000-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1129106556", 
              "https://doi.org/10.1038/s41591-020-1000-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-020-2405-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1128295907", 
              "https://doi.org/10.1038/s41586-020-2405-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s41256-020-00152-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1127628708", 
              "https://doi.org/10.1186/s41256-020-00152-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11684-020-0766-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125855618", 
              "https://doi.org/10.1007/s11684-020-0766-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-020-19393-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1132506391", 
              "https://doi.org/10.1038/s41467-020-19393-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-021-21358-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1135407390", 
              "https://doi.org/10.1038/s41467-021-21358-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/d41586-020-01003-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1126084859", 
              "https://doi.org/10.1038/d41586-020-01003-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-019-39714-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112543990", 
              "https://doi.org/10.1038/s41598-019-39714-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-020-72611-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131095856", 
              "https://doi.org/10.1038/s41598-020-72611-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-09-23", 
        "datePublishedReg": "2021-09-23", 
        "description": "The complexities involved in modelling the transmission dynamics of COVID-19 has been a roadblock in achieving predictability in the spread and containment of the disease. In addition to understanding the modes of transmission, the effectiveness of the mitigation methods also needs to be built into any effective model for making such predictions. We show that such complexities can be circumvented by appealing to scaling principles which lead to the emergence of universality in the transmission dynamics of the disease. The ensuing data collapse renders the transmission dynamics largely independent of geopolitical variations, the effectiveness of various mitigation strategies, population demographics, etc. We propose a simple two-parameter model-the Blue Sky model-and show that one class of transmission dynamics can be explained by a solution that lives at the edge of a blue sky bifurcation. In addition, the data collapse leads to an enhanced degree of predictability in the disease spread for several geographical scales which can also be realized in a model-independent manner as we show using a deep neural network. The methodology adopted in this work can potentially be applied to the transmission of other infectious diseases and new universality classes may be found. The predictability in transmission dynamics and the simplicity of our methodology can help in building policies for exit strategies and mitigation methods during a pandemic.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-021-98302-3", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.9646011", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "keywords": [
          "emergence of universality", 
          "data collapse", 
          "blue sky bifurcation", 
          "new universality class", 
          "two-parameter model", 
          "universality class", 
          "model-independent manner", 
          "transmission dynamics", 
          "dynamics", 
          "effective model", 
          "sky model", 
          "neural network", 
          "such complexity", 
          "universality", 
          "class", 
          "deep neural networks", 
          "such predictions", 
          "mitigation methods", 
          "complexity", 
          "model", 
          "bifurcation", 
          "geopolitical variations", 
          "enhanced degree", 
          "methodology", 
          "solution", 
          "effectiveness", 
          "simplicity", 
          "edge", 
          "prediction", 
          "predictability", 
          "network", 
          "principles", 
          "collapse", 
          "mode", 
          "transmission", 
          "work", 
          "variation", 
          "scale", 
          "spread", 
          "emergence", 
          "degree", 
          "addition", 
          "strategies", 
          "manner", 
          "roadblocks", 
          "geographical scales", 
          "mitigation strategies", 
          "infectious diseases", 
          "containment", 
          "policy", 
          "exit strategy", 
          "COVID-19", 
          "population demographics", 
          "mode of transmission", 
          "pandemic", 
          "disease", 
          "method", 
          "demographics", 
          "Blue Sky model", 
          "sky bifurcation"
        ], 
        "name": "Emergence of universality in the transmission dynamics of COVID-19", 
        "pagination": "18891", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1141320046"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-021-98302-3"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "34556753"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-021-98302-3", 
          "https://app.dimensions.ai/details/publication/pub.1141320046"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_883.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-021-98302-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-98302-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-98302-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-98302-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-98302-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    263 TRIPLES      22 PREDICATES      114 URIs      85 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-021-98302-3 schema:about N0959909100d44c64b6f2c8ca5ee3eec9
    2 N49184a1fd7c744b88e6c9c8997bc99f1
    3 N772e5f86798d4fd89c87b882b5ae8227
    4 Nb74f07a698384362963a7a1b126c91f7
    5 Nb9974e35645646c984af67d363229dc7
    6 Ncdef4ac59e804bb68b85c931e9b27f68
    7 Nda1c27f0e9024e1d8200870a319d5ad5
    8 anzsrc-for:11
    9 anzsrc-for:1117
    10 schema:author Nfcee53e39be34b86808f88cb2c48be71
    11 schema:citation sg:pub.10.1007/978-3-540-78911-6_2
    12 sg:pub.10.1007/978-3-540-78911-6_3
    13 sg:pub.10.1007/s11071-020-05862-6
    14 sg:pub.10.1007/s11684-020-0766-9
    15 sg:pub.10.1007/s41403-021-00210-5
    16 sg:pub.10.1038/d41586-020-01003-6
    17 sg:pub.10.1038/s41467-020-19393-6
    18 sg:pub.10.1038/s41467-021-21358-2
    19 sg:pub.10.1038/s41562-020-0908-8
    20 sg:pub.10.1038/s41562-020-0931-9
    21 sg:pub.10.1038/s41586-020-2405-7
    22 sg:pub.10.1038/s41591-020-1000-7
    23 sg:pub.10.1038/s41592-019-0686-2
    24 sg:pub.10.1038/s41598-019-39714-0
    25 sg:pub.10.1038/s41598-020-72529-y
    26 sg:pub.10.1038/s41598-020-72611-5
    27 sg:pub.10.1140/epjst/e2007-00058-2
    28 sg:pub.10.1186/1472-6947-12-124
    29 sg:pub.10.1186/s12879-021-05926-x
    30 sg:pub.10.1186/s12889-021-10561-x
    31 sg:pub.10.1186/s41256-020-00152-5
    32 schema:datePublished 2021-09-23
    33 schema:datePublishedReg 2021-09-23
    34 schema:description The complexities involved in modelling the transmission dynamics of COVID-19 has been a roadblock in achieving predictability in the spread and containment of the disease. In addition to understanding the modes of transmission, the effectiveness of the mitigation methods also needs to be built into any effective model for making such predictions. We show that such complexities can be circumvented by appealing to scaling principles which lead to the emergence of universality in the transmission dynamics of the disease. The ensuing data collapse renders the transmission dynamics largely independent of geopolitical variations, the effectiveness of various mitigation strategies, population demographics, etc. We propose a simple two-parameter model-the Blue Sky model-and show that one class of transmission dynamics can be explained by a solution that lives at the edge of a blue sky bifurcation. In addition, the data collapse leads to an enhanced degree of predictability in the disease spread for several geographical scales which can also be realized in a model-independent manner as we show using a deep neural network. The methodology adopted in this work can potentially be applied to the transmission of other infectious diseases and new universality classes may be found. The predictability in transmission dynamics and the simplicity of our methodology can help in building policies for exit strategies and mitigation methods during a pandemic.
    35 schema:genre article
    36 schema:inLanguage en
    37 schema:isAccessibleForFree true
    38 schema:isPartOf N93770a561f5f4b78841c8ae5e9248b77
    39 Nf91312a20f32464cb8bbdc8c7db343e8
    40 sg:journal.1045337
    41 schema:keywords Blue Sky model
    42 COVID-19
    43 addition
    44 bifurcation
    45 blue sky bifurcation
    46 class
    47 collapse
    48 complexity
    49 containment
    50 data collapse
    51 deep neural networks
    52 degree
    53 demographics
    54 disease
    55 dynamics
    56 edge
    57 effective model
    58 effectiveness
    59 emergence
    60 emergence of universality
    61 enhanced degree
    62 exit strategy
    63 geographical scales
    64 geopolitical variations
    65 infectious diseases
    66 manner
    67 method
    68 methodology
    69 mitigation methods
    70 mitigation strategies
    71 mode
    72 mode of transmission
    73 model
    74 model-independent manner
    75 network
    76 neural network
    77 new universality class
    78 pandemic
    79 policy
    80 population demographics
    81 predictability
    82 prediction
    83 principles
    84 roadblocks
    85 scale
    86 simplicity
    87 sky bifurcation
    88 sky model
    89 solution
    90 spread
    91 strategies
    92 such complexity
    93 such predictions
    94 transmission
    95 transmission dynamics
    96 two-parameter model
    97 universality
    98 universality class
    99 variation
    100 work
    101 schema:name Emergence of universality in the transmission dynamics of COVID-19
    102 schema:pagination 18891
    103 schema:productId N521753fe6b8942bbb6c531b08a758564
    104 N8af6a9ed93bd4065a13d1306385853d4
    105 Ndb871d8aa5b941b0ad3ec465803bd5c2
    106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141320046
    107 https://doi.org/10.1038/s41598-021-98302-3
    108 schema:sdDatePublished 2022-01-01T18:57
    109 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    110 schema:sdPublisher Na3be01bbae594a2999054a5fff87f839
    111 schema:url https://doi.org/10.1038/s41598-021-98302-3
    112 sgo:license sg:explorer/license/
    113 sgo:sdDataset articles
    114 rdf:type schema:ScholarlyArticle
    115 N0959909100d44c64b6f2c8ca5ee3eec9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Models, Theoretical
    117 rdf:type schema:DefinedTerm
    118 N49184a1fd7c744b88e6c9c8997bc99f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name COVID-19
    120 rdf:type schema:DefinedTerm
    121 N521753fe6b8942bbb6c531b08a758564 schema:name dimensions_id
    122 schema:value pub.1141320046
    123 rdf:type schema:PropertyValue
    124 N772e5f86798d4fd89c87b882b5ae8227 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Disease Transmission, Infectious
    126 rdf:type schema:DefinedTerm
    127 N7bd22ed18e784b9da03cb53f3870161b rdf:first sg:person.01075117510.01
    128 rdf:rest rdf:nil
    129 N8af6a9ed93bd4065a13d1306385853d4 schema:name pubmed_id
    130 schema:value 34556753
    131 rdf:type schema:PropertyValue
    132 N93770a561f5f4b78841c8ae5e9248b77 schema:volumeNumber 11
    133 rdf:type schema:PublicationVolume
    134 Na107c24aa20948648a560a3bb318538b rdf:first sg:person.015365735162.55
    135 rdf:rest Nd638a727fc0843d1a42bdad2d449f9e5
    136 Na3be01bbae594a2999054a5fff87f839 schema:name Springer Nature - SN SciGraph project
    137 rdf:type schema:Organization
    138 Nb74f07a698384362963a7a1b126c91f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Pandemics
    140 rdf:type schema:DefinedTerm
    141 Nb9974e35645646c984af67d363229dc7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Models, Statistical
    143 rdf:type schema:DefinedTerm
    144 Ncdef4ac59e804bb68b85c931e9b27f68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Humans
    146 rdf:type schema:DefinedTerm
    147 Nd638a727fc0843d1a42bdad2d449f9e5 rdf:first sg:person.07357001047.19
    148 rdf:rest N7bd22ed18e784b9da03cb53f3870161b
    149 Nda1c27f0e9024e1d8200870a319d5ad5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name SARS-CoV-2
    151 rdf:type schema:DefinedTerm
    152 Ndb871d8aa5b941b0ad3ec465803bd5c2 schema:name doi
    153 schema:value 10.1038/s41598-021-98302-3
    154 rdf:type schema:PropertyValue
    155 Nf91312a20f32464cb8bbdc8c7db343e8 schema:issueNumber 1
    156 rdf:type schema:PublicationIssue
    157 Nfcee53e39be34b86808f88cb2c48be71 rdf:first sg:person.016214036561.80
    158 rdf:rest Na107c24aa20948648a560a3bb318538b
    159 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    160 schema:name Medical and Health Sciences
    161 rdf:type schema:DefinedTerm
    162 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
    163 schema:name Public Health and Health Services
    164 rdf:type schema:DefinedTerm
    165 sg:grant.9646011 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-021-98302-3
    166 rdf:type schema:MonetaryGrant
    167 sg:journal.1045337 schema:issn 2045-2322
    168 schema:name Scientific Reports
    169 schema:publisher Springer Nature
    170 rdf:type schema:Periodical
    171 sg:person.01075117510.01 schema:affiliation grid-institutes:grid.417965.8
    172 schema:familyName Chakraborty
    173 schema:givenName Sagar
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075117510.01
    175 rdf:type schema:Person
    176 sg:person.015365735162.55 schema:affiliation grid-institutes:None
    177 schema:familyName Bhattacharjee
    178 schema:givenName Jayanta Kumar
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365735162.55
    180 rdf:type schema:Person
    181 sg:person.016214036561.80 schema:affiliation grid-institutes:grid.7468.d
    182 schema:familyName Paul
    183 schema:givenName Ayan
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016214036561.80
    185 rdf:type schema:Person
    186 sg:person.07357001047.19 schema:affiliation grid-institutes:None
    187 schema:familyName Pal
    188 schema:givenName Akshay
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07357001047.19
    190 rdf:type schema:Person
    191 sg:pub.10.1007/978-3-540-78911-6_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002103213
    192 https://doi.org/10.1007/978-3-540-78911-6_2
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/978-3-540-78911-6_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018871190
    195 https://doi.org/10.1007/978-3-540-78911-6_3
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s11071-020-05862-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130179101
    198 https://doi.org/10.1007/s11071-020-05862-6
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s11684-020-0766-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125855618
    201 https://doi.org/10.1007/s11684-020-0766-9
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/s41403-021-00210-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135805081
    204 https://doi.org/10.1007/s41403-021-00210-5
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/d41586-020-01003-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126084859
    207 https://doi.org/10.1038/d41586-020-01003-6
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/s41467-020-19393-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132506391
    210 https://doi.org/10.1038/s41467-020-19393-6
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/s41467-021-21358-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135407390
    213 https://doi.org/10.1038/s41467-021-21358-2
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/s41562-020-0908-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128661661
    216 https://doi.org/10.1038/s41562-020-0908-8
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/s41562-020-0931-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129878862
    219 https://doi.org/10.1038/s41562-020-0931-9
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/s41586-020-2405-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128295907
    222 https://doi.org/10.1038/s41586-020-2405-7
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/s41591-020-1000-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129106556
    225 https://doi.org/10.1038/s41591-020-1000-7
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/s41592-019-0686-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124547608
    228 https://doi.org/10.1038/s41592-019-0686-2
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/s41598-019-39714-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112543990
    231 https://doi.org/10.1038/s41598-019-39714-0
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/s41598-020-72529-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1131160182
    234 https://doi.org/10.1038/s41598-020-72529-y
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/s41598-020-72611-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131095856
    237 https://doi.org/10.1038/s41598-020-72611-5
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1140/epjst/e2007-00058-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048315334
    240 https://doi.org/10.1140/epjst/e2007-00058-2
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1186/1472-6947-12-124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038482820
    243 https://doi.org/10.1186/1472-6947-12-124
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1186/s12879-021-05926-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1136047311
    246 https://doi.org/10.1186/s12879-021-05926-x
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1186/s12889-021-10561-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1136669254
    249 https://doi.org/10.1186/s12889-021-10561-x
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1186/s41256-020-00152-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127628708
    252 https://doi.org/10.1186/s41256-020-00152-5
    253 rdf:type schema:CreativeWork
    254 grid-institutes:None schema:alternateName Indian Institute for Cultivation of Science, Jadavpur, Kolkata 700032 India
    255 schema:name Indian Institute for Cultivation of Science, Jadavpur, Kolkata 700032 India
    256 rdf:type schema:Organization
    257 grid-institutes:grid.417965.8 schema:alternateName Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 India
    258 schema:name Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 India
    259 rdf:type schema:Organization
    260 grid-institutes:grid.7468.d schema:alternateName Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
    261 schema:name Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
    262 Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
    263 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...