Lactobacillus crispatus thrives in pregnancy hormonal milieu in a Nigerian patient cohort View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-09-13

AUTHORS

Nkechi Martina Odogwu, Chinedum Amara Onebunne, Jun Chen, Funmilola A. Ayeni, Marina R. S. Walther-Antonio, Oladapo O. Olayemi, Nicholas Chia, Akinyinka O. Omigbodun

ABSTRACT

Steroid hormones are one of the presumed modulators of Lactobacillus abundance in the vaginal epithelium. We set out to characterize the vaginal microbiome (VMB) and also provide an in-depth understanding of the relative contribution of estradiol (E2) and progesterone (P1) in shaping the vaginal microbiome of Nigerian women (n = 38) who experienced both uncomplicated term delivery and preterm delivery using samples longitudinally collected during pregnancy (17–21, 27–31, 36–41 weeks gestation) and 6 weeks postpartum. Vaginal swabs and blood samples were aseptically collected. Vaginal swabs were used for microbiome assessment using 16S ribosomal RNA (rRNA) gene sequencing. Blood samples were used for hormonal measurement using a competitive-based enzyme-linked immunosorbent assay (ELISA). Across several maternal covariates, maternal age, pregnancy status and delivery mode were not significantly associated with the vaginal microbiota whereas maternal E2 level (pE2 = 0.006, Omnibus), and P1 level (pP1 = 0.001, Omnibus) were significantly associated with the vaginal microbiome. E2 and P1 concentrations increased throughout pregnancy commensurately with increasing proportions of L. crispatus (pE2 = 0.036, pP1 = 0.034, Linear Mixed Model). An increasing trend of α-diversity was also observed as pregnancy progressed (pobserved ASV = 0.006, LMM). A compositional microbiome shift from Lactobacillus profile to non-Lactobacillus profile was observed in most postnatal women (pCST IV < 0.001, LMM). Analysis of our data shows a species-specific link between pregnancy steroid hormone concentration and L. crispatus abundance. More... »

PAGES

18152

References to SciGraph publications

  • 2014-03-19. Basic vaginal pH, bacterial vaginosis and aerobic vaginitis: prevalence in early pregnancy and risk of spontaneous preterm delivery, a prospective study in a low socioeconomic and multiethnic South American population in BMC PREGNANCY AND CHILDBIRTH
  • 2004-02-13. Association of Atopobium vaginae, a recently described metronidazole resistant anaerobe, with bacterial vaginosis in BMC INFECTIOUS DISEASES
  • 2010-09-09. UniFrac: an effective distance metric for microbial community comparison in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2014-07-04. Characterization of the vaginal microbiota of healthy Canadian women through the menstrual cycle in MICROBIOME
  • 2009-06-02. Longitudinal analysis of the vaginal microflora in pregnancy suggests that L. crispatus promotes the stability of the normal vaginal microflora and that L. gasseri and/or L. iners are more conducive to the occurrence of abnormal vaginal microflora in BMC MICROBIOLOGY
  • 2012-01-06. The dynamics of the vaginal microbiome during infertility therapy with in vitro fertilization-embryo transfer in JOURNAL OF ASSISTED REPRODUCTION AND GENETICS
  • 1999-08. Is there a protective role for vaginal flora? in CURRENT INFECTIOUS DISEASE REPORTS
  • 2015-02-21. Correlates of the molecular vaginal microbiota composition of African women in BMC INFECTIOUS DISEASES
  • 2014-02-03. The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women in MICROBIOME
  • 2016-07-25. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies in NATURE BIOTECHNOLOGY
  • 2010-04-11. QIIME allows analysis of high-throughput community sequencing data in NATURE METHODS
  • 2016-07-04. Hormone concentrations throughout uncomplicated pregnancies: a longitudinal study in BMC PREGNANCY AND CHILDBIRTH
  • 2014-01. Diversity of the Vaginal Microbiome Correlates With Preterm Birth in REPRODUCTIVE SCIENCES
  • 2014-10-18. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? in JOURNAL OF CLASSIFICATION
  • 2013-01-01. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing in NATURE METHODS
  • 2015-03-11. The vaginal microbiome during pregnancy and the postpartum period in a European population in SCIENTIFIC REPORTS
  • 2019-05-29. Racioethnic diversity in the dynamics of the vaginal microbiome during pregnancy in NATURE MEDICINE
  • 2007-05-10. Differences in the composition of vaginal microbial communities found in healthy Caucasian and black women in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2018-06-28. Increased richness and diversity of the vaginal microbiota and spontaneous preterm birth in MICROBIOME
  • 2019-05-29. The vaginal microbiome and preterm birth in NATURE MEDICINE
  • 2017-08-23. The vaginal microbiome of pregnant women is less rich and diverse, with lower prevalence of Mollicutes, compared to non-pregnant women in SCIENTIFIC REPORTS
  • 2016-05-23. DADA2: High-resolution sample inference from Illumina amplicon data in NATURE METHODS
  • 2019-07-24. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 in NATURE BIOTECHNOLOGY
  • 2010-11-29. Microbiota restoration: natural and supplemented recovery of human microbial communities in NATURE REVIEWS MICROBIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-021-96339-y

    DOI

    http://dx.doi.org/10.1038/s41598-021-96339-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1141074516

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/34518588


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1114", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Paediatrics and Reproductive Medicine", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biodiversity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Delivery, Obstetric", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gestational Age", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hormones", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lactobacillus crispatus", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microbiota", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nigeria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phylogeny", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Postpartum Period", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pregnancy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Premature Birth", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Species Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Vagina", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Young Adult", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Obstetrics and Gynecology, College of Medicine, University of Ibadan, Ibadan, Nigeria", 
              "id": "http://www.grid.ac/institutes/grid.9582.6", 
              "name": [
                "Pan African University Life and Earth Sciences Institute (PAULESI), University of Ibadan, Ibadan, Oyo State, Nigeria", 
                "Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, MN, USA", 
                "Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA", 
                "Department of Obstetrics and Gynecology, College of Medicine, University of Ibadan, Ibadan, Nigeria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Odogwu", 
            "givenName": "Nkechi Martina", 
            "id": "sg:person.011147337743.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011147337743.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Obstetrics and Gynecology, University College Hospital, Ibadan, Nigeria", 
              "id": "http://www.grid.ac/institutes/grid.412438.8", 
              "name": [
                "Department of Obstetrics and Gynecology, University College Hospital, Ibadan, Nigeria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Onebunne", 
            "givenName": "Chinedum Amara", 
            "id": "sg:person.013305644153.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013305644153.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Health Science Research, Mayo Clinic, Rochester, MN, USA", 
              "id": "http://www.grid.ac/institutes/grid.66875.3a", 
              "name": [
                "Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA", 
                "Department of Health Science Research, Mayo Clinic, Rochester, MN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Jun", 
            "id": "sg:person.01023412627.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023412627.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria", 
              "id": "http://www.grid.ac/institutes/grid.9582.6", 
              "name": [
                "Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ayeni", 
            "givenName": "Funmilola A.", 
            "id": "sg:person.01132120772.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132120772.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA", 
              "id": "http://www.grid.ac/institutes/grid.66875.3a", 
              "name": [
                "Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, MN, USA", 
                "Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA", 
                "Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Walther-Antonio", 
            "givenName": "Marina R. S.", 
            "id": "sg:person.01064173222.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064173222.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Obstetrics and Gynecology, College of Medicine, University of Ibadan, Ibadan, Nigeria", 
              "id": "http://www.grid.ac/institutes/grid.9582.6", 
              "name": [
                "Department of Obstetrics and Gynecology, University College Hospital, Ibadan, Nigeria", 
                "Department of Obstetrics and Gynecology, College of Medicine, University of Ibadan, Ibadan, Nigeria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Olayemi", 
            "givenName": "Oladapo O.", 
            "id": "sg:person.01120044210.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120044210.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA", 
              "id": "http://www.grid.ac/institutes/grid.66875.3a", 
              "name": [
                "Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, MN, USA", 
                "Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA", 
                "Department of Health Science Research, Mayo Clinic, Rochester, MN, USA", 
                "Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chia", 
            "givenName": "Nicholas", 
            "id": "sg:person.01212544443.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212544443.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Obstetrics and Gynecology, College of Medicine, University of Ibadan, Ibadan, Nigeria", 
              "id": "http://www.grid.ac/institutes/grid.9582.6", 
              "name": [
                "Department of Obstetrics and Gynecology, University College Hospital, Ibadan, Nigeria", 
                "Department of Obstetrics and Gynecology, College of Medicine, University of Ibadan, Ibadan, Nigeria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Omigbodun", 
            "givenName": "Akinyinka O.", 
            "id": "sg:person.01243365040.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243365040.42"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/2049-2618-2-23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049519112", 
              "https://doi.org/10.1186/2049-2618-2-23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00357-014-9161-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049678681", 
              "https://doi.org/10.1007/s00357-014-9161-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep08988", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032618141", 
              "https://doi.org/10.1038/srep08988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2049-2618-2-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042220655", 
              "https://doi.org/10.1186/2049-2618-2-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039195944", 
              "https://doi.org/10.1038/nmeth.2276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002490773", 
              "https://doi.org/10.1038/nbt.3601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10815-011-9694-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025571343", 
              "https://doi.org/10.1007/s10815-011-9694-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2180-9-116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003027770", 
              "https://doi.org/10.1186/1471-2180-9-116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro2473", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003384875", 
              "https://doi.org/10.1038/nrmicro2473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2393-14-107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018197185", 
              "https://doi.org/10.1186/1471-2393-14-107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-07790-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091267060", 
              "https://doi.org/10.1038/s41598-017-07790-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3869", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016631324", 
              "https://doi.org/10.1038/nmeth.3869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2007.12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001560476", 
              "https://doi.org/10.1038/ismej.2007.12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41591-019-0465-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1115996513", 
              "https://doi.org/10.1038/s41591-019-0465-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1177/1933719113488838", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029806918", 
              "https://doi.org/10.1177/1933719113488838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41591-019-0450-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1115985567", 
              "https://doi.org/10.1038/s41591-019-0450-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2010.133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042916034", 
              "https://doi.org/10.1038/ismej.2010.133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2334-4-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017764187", 
              "https://doi.org/10.1186/1471-2334-4-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41587-019-0209-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1119809350", 
              "https://doi.org/10.1038/s41587-019-0209-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.f.303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009032055", 
              "https://doi.org/10.1038/nmeth.f.303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11908-999-0045-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018323127", 
              "https://doi.org/10.1007/s11908-999-0045-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40168-018-0502-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105206730", 
              "https://doi.org/10.1186/s40168-018-0502-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12879-015-0831-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010357304", 
              "https://doi.org/10.1186/s12879-015-0831-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12884-016-0937-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024827099", 
              "https://doi.org/10.1186/s12884-016-0937-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-09-13", 
        "datePublishedReg": "2021-09-13", 
        "description": "Steroid hormones are one of the presumed modulators of Lactobacillus abundance in the vaginal epithelium. We set out to characterize the vaginal microbiome (VMB) and also provide an in-depth understanding of the relative contribution of estradiol (E2) and progesterone (P1) in shaping the vaginal microbiome of Nigerian women (n\u2009=\u200938) who experienced both uncomplicated term delivery and preterm delivery using samples longitudinally collected during pregnancy (17\u201321, 27\u201331, 36\u201341\u00a0weeks gestation) and 6\u00a0weeks postpartum. Vaginal swabs and blood samples were aseptically collected. Vaginal swabs were used for microbiome assessment using 16S ribosomal RNA (rRNA) gene sequencing. Blood samples were used for hormonal measurement using a competitive-based enzyme-linked immunosorbent assay (ELISA). Across several maternal covariates, maternal age, pregnancy status and delivery mode were not significantly associated with the vaginal microbiota whereas maternal E2 level (pE2\u2009=\u20090.006, Omnibus), and P1 level (pP1\u2009=\u20090.001, Omnibus) were significantly associated with the vaginal microbiome. E2 and P1 concentrations increased throughout pregnancy commensurately with increasing proportions of L. crispatus (pE2\u2009=\u20090.036, pP1\u2009=\u20090.034, Linear Mixed Model). An increasing trend of \u03b1-diversity was also observed as pregnancy progressed (pobserved ASV\u2009=\u20090.006, LMM). A compositional microbiome shift from Lactobacillus profile to non-Lactobacillus profile was observed in most postnatal women (pCST IV\u2009<\u20090.001, LMM). Analysis of our data shows a species-specific link between pregnancy steroid hormone concentration and L. crispatus abundance.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-021-96339-y", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7072411", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "keywords": [
          "enzyme-linked immunosorbent assay", 
          "vaginal microbiome", 
          "blood samples", 
          "vaginal swabs", 
          "uncomplicated term deliveries", 
          "steroid hormone concentrations", 
          "ribosomal RNA gene sequencing", 
          "RNA gene sequencing", 
          "preterm delivery", 
          "term delivery", 
          "hormonal measurements", 
          "maternal age", 
          "postnatal women", 
          "hormonal milieu", 
          "patient cohort", 
          "weeks postpartum", 
          "E2 levels", 
          "maternal covariates", 
          "vaginal epithelium", 
          "vaginal microbiota", 
          "hormone concentrations", 
          "pregnancy status", 
          "Nigerian women", 
          "steroid hormones", 
          "pregnancy", 
          "Lactobacillus abundance", 
          "immunosorbent assay", 
          "L. crispatus", 
          "delivery mode", 
          "P1 concentrations", 
          "swabs", 
          "microbiome assessment", 
          "women", 
          "microbiome shifts", 
          "microbiome", 
          "gene sequencing", 
          "P1 level", 
          "delivery", 
          "estradiol", 
          "progesterone", 
          "postpartum", 
          "cohort", 
          "hormone", 
          "epithelium", 
          "E2", 
          "age", 
          "microbiota", 
          "crispatus", 
          "levels", 
          "covariates", 
          "relative contribution", 
          "\u03b1-diversity", 
          "status", 
          "assays", 
          "profile", 
          "concentration", 
          "samples", 
          "proportion", 
          "milieu", 
          "modulator", 
          "assessment", 
          "sequencing", 
          "data", 
          "depth understanding", 
          "analysis", 
          "trends", 
          "understanding", 
          "link", 
          "measurements", 
          "abundance", 
          "contribution", 
          "shift", 
          "mode", 
          "thrives"
        ], 
        "name": "Lactobacillus crispatus thrives in pregnancy hormonal milieu in a Nigerian patient cohort", 
        "pagination": "18152", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1141074516"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-021-96339-y"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "34518588"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-021-96339-y", 
          "https://app.dimensions.ai/details/publication/pub.1141074516"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_918.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-021-96339-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-96339-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-96339-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-96339-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-96339-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    371 TRIPLES      21 PREDICATES      141 URIs      109 LITERALS      25 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-021-96339-y schema:about N03ddc2b645014599bc332f956a0f412f
    2 N080193f4aab74efb98ef8b613ee43b3a
    3 N0d3c65ec9f244a65b6979ed17ff485e4
    4 N2cbc626873c94935a3d4522b5455e5e2
    5 N3d747fb1bdcf483f8bee07e222dfd4c7
    6 N4196b1de0612487abec0acde74663c90
    7 N486d986bc6054b849c2af2e2cd77c9ab
    8 N50bbb6f1aa534b19b2cef69c7fa11f25
    9 N554b19bc428b4feba7f09932adc3d205
    10 N61c1e0b4a08344d898c01bb03c2180b5
    11 N7de50ef0d0514d6dad936e4e84c6848c
    12 N912b6fe6cc5841959bc23db1109a2df8
    13 Nb0792e5714cd43599ab6c5d58cc3ff52
    14 Nd3e18ceca22d4eb2a5de03ff1a5ae49b
    15 Ndf149544b71e4938bbaee44358f8308d
    16 Ne0d869ae8988478c992a84410bea9c0d
    17 Ne334eac8deaa4a6ebf122686d9d4f669
    18 Neb3c723969d4435a9c4f1a92bd93441c
    19 anzsrc-for:11
    20 anzsrc-for:1114
    21 schema:author Ncf184e8f856e44bcb409f1d77dcc1cd2
    22 schema:citation sg:pub.10.1007/s00357-014-9161-z
    23 sg:pub.10.1007/s10815-011-9694-6
    24 sg:pub.10.1007/s11908-999-0045-z
    25 sg:pub.10.1038/ismej.2007.12
    26 sg:pub.10.1038/ismej.2010.133
    27 sg:pub.10.1038/nbt.3601
    28 sg:pub.10.1038/nmeth.2276
    29 sg:pub.10.1038/nmeth.3869
    30 sg:pub.10.1038/nmeth.f.303
    31 sg:pub.10.1038/nrmicro2473
    32 sg:pub.10.1038/s41587-019-0209-9
    33 sg:pub.10.1038/s41591-019-0450-2
    34 sg:pub.10.1038/s41591-019-0465-8
    35 sg:pub.10.1038/s41598-017-07790-9
    36 sg:pub.10.1038/srep08988
    37 sg:pub.10.1177/1933719113488838
    38 sg:pub.10.1186/1471-2180-9-116
    39 sg:pub.10.1186/1471-2334-4-5
    40 sg:pub.10.1186/1471-2393-14-107
    41 sg:pub.10.1186/2049-2618-2-23
    42 sg:pub.10.1186/2049-2618-2-4
    43 sg:pub.10.1186/s12879-015-0831-1
    44 sg:pub.10.1186/s12884-016-0937-5
    45 sg:pub.10.1186/s40168-018-0502-8
    46 schema:datePublished 2021-09-13
    47 schema:datePublishedReg 2021-09-13
    48 schema:description Steroid hormones are one of the presumed modulators of Lactobacillus abundance in the vaginal epithelium. We set out to characterize the vaginal microbiome (VMB) and also provide an in-depth understanding of the relative contribution of estradiol (E2) and progesterone (P1) in shaping the vaginal microbiome of Nigerian women (n = 38) who experienced both uncomplicated term delivery and preterm delivery using samples longitudinally collected during pregnancy (17–21, 27–31, 36–41 weeks gestation) and 6 weeks postpartum. Vaginal swabs and blood samples were aseptically collected. Vaginal swabs were used for microbiome assessment using 16S ribosomal RNA (rRNA) gene sequencing. Blood samples were used for hormonal measurement using a competitive-based enzyme-linked immunosorbent assay (ELISA). Across several maternal covariates, maternal age, pregnancy status and delivery mode were not significantly associated with the vaginal microbiota whereas maternal E2 level (pE2 = 0.006, Omnibus), and P1 level (pP1 = 0.001, Omnibus) were significantly associated with the vaginal microbiome. E2 and P1 concentrations increased throughout pregnancy commensurately with increasing proportions of L. crispatus (pE2 = 0.036, pP1 = 0.034, Linear Mixed Model). An increasing trend of α-diversity was also observed as pregnancy progressed (pobserved ASV = 0.006, LMM). A compositional microbiome shift from Lactobacillus profile to non-Lactobacillus profile was observed in most postnatal women (pCST IV < 0.001, LMM). Analysis of our data shows a species-specific link between pregnancy steroid hormone concentration and L. crispatus abundance.
    49 schema:genre article
    50 schema:isAccessibleForFree true
    51 schema:isPartOf Nbbb8225ea1674bd488cccbe08172437b
    52 Nc6c3ceb106c9454c9726351fc864c1c2
    53 sg:journal.1045337
    54 schema:keywords E2
    55 E2 levels
    56 L. crispatus
    57 Lactobacillus abundance
    58 Nigerian women
    59 P1 concentrations
    60 P1 level
    61 RNA gene sequencing
    62 abundance
    63 age
    64 analysis
    65 assays
    66 assessment
    67 blood samples
    68 cohort
    69 concentration
    70 contribution
    71 covariates
    72 crispatus
    73 data
    74 delivery
    75 delivery mode
    76 depth understanding
    77 enzyme-linked immunosorbent assay
    78 epithelium
    79 estradiol
    80 gene sequencing
    81 hormonal measurements
    82 hormonal milieu
    83 hormone
    84 hormone concentrations
    85 immunosorbent assay
    86 levels
    87 link
    88 maternal age
    89 maternal covariates
    90 measurements
    91 microbiome
    92 microbiome assessment
    93 microbiome shifts
    94 microbiota
    95 milieu
    96 mode
    97 modulator
    98 patient cohort
    99 postnatal women
    100 postpartum
    101 pregnancy
    102 pregnancy status
    103 preterm delivery
    104 profile
    105 progesterone
    106 proportion
    107 relative contribution
    108 ribosomal RNA gene sequencing
    109 samples
    110 sequencing
    111 shift
    112 status
    113 steroid hormone concentrations
    114 steroid hormones
    115 swabs
    116 term delivery
    117 thrives
    118 trends
    119 uncomplicated term deliveries
    120 understanding
    121 vaginal epithelium
    122 vaginal microbiome
    123 vaginal microbiota
    124 vaginal swabs
    125 weeks postpartum
    126 women
    127 α-diversity
    128 schema:name Lactobacillus crispatus thrives in pregnancy hormonal milieu in a Nigerian patient cohort
    129 schema:pagination 18152
    130 schema:productId N8fa136b8877245deb979c573f5f85d93
    131 Nbc1621ce5614411caa7baf74baa71831
    132 Ne9576b1780d6494dacf19cb6c2ab261d
    133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141074516
    134 https://doi.org/10.1038/s41598-021-96339-y
    135 schema:sdDatePublished 2022-09-02T16:07
    136 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    137 schema:sdPublisher N62a16bb444f244b2a3103e5f32064bca
    138 schema:url https://doi.org/10.1038/s41598-021-96339-y
    139 sgo:license sg:explorer/license/
    140 sgo:sdDataset articles
    141 rdf:type schema:ScholarlyArticle
    142 N0326203bd1594bc78dcf4ea68d8ab4ad rdf:first sg:person.01120044210.73
    143 rdf:rest N349db514cab94821b857bad27de49908
    144 N03ddc2b645014599bc332f956a0f412f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Pregnancy
    146 rdf:type schema:DefinedTerm
    147 N080193f4aab74efb98ef8b613ee43b3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Species Specificity
    149 rdf:type schema:DefinedTerm
    150 N0d3c65ec9f244a65b6979ed17ff485e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Biodiversity
    152 rdf:type schema:DefinedTerm
    153 N1758e4202fa44e10bd76f220f673d4f7 rdf:first sg:person.01132120772.66
    154 rdf:rest Nd24f46164de74964b27590b978b16bd6
    155 N2cbc626873c94935a3d4522b5455e5e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Gestational Age
    157 rdf:type schema:DefinedTerm
    158 N349db514cab94821b857bad27de49908 rdf:first sg:person.01212544443.79
    159 rdf:rest Nd5a605342f1a49c5929b85bd30379f37
    160 N3d747fb1bdcf483f8bee07e222dfd4c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Adult
    162 rdf:type schema:DefinedTerm
    163 N4196b1de0612487abec0acde74663c90 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Vagina
    165 rdf:type schema:DefinedTerm
    166 N486d986bc6054b849c2af2e2cd77c9ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Humans
    168 rdf:type schema:DefinedTerm
    169 N50bbb6f1aa534b19b2cef69c7fa11f25 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Hormones
    171 rdf:type schema:DefinedTerm
    172 N554b19bc428b4feba7f09932adc3d205 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Delivery, Obstetric
    174 rdf:type schema:DefinedTerm
    175 N61c1e0b4a08344d898c01bb03c2180b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Bacteria
    177 rdf:type schema:DefinedTerm
    178 N6241be3dd1774d0fb8bc6cfd838fa236 rdf:first sg:person.013305644153.43
    179 rdf:rest N73967c7adc1f4419be9fa967bed691d1
    180 N62a16bb444f244b2a3103e5f32064bca schema:name Springer Nature - SN SciGraph project
    181 rdf:type schema:Organization
    182 N73967c7adc1f4419be9fa967bed691d1 rdf:first sg:person.01023412627.52
    183 rdf:rest N1758e4202fa44e10bd76f220f673d4f7
    184 N7de50ef0d0514d6dad936e4e84c6848c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name Young Adult
    186 rdf:type schema:DefinedTerm
    187 N8fa136b8877245deb979c573f5f85d93 schema:name dimensions_id
    188 schema:value pub.1141074516
    189 rdf:type schema:PropertyValue
    190 N912b6fe6cc5841959bc23db1109a2df8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    191 schema:name Female
    192 rdf:type schema:DefinedTerm
    193 Nb0792e5714cd43599ab6c5d58cc3ff52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    194 schema:name Nigeria
    195 rdf:type schema:DefinedTerm
    196 Nbbb8225ea1674bd488cccbe08172437b schema:volumeNumber 11
    197 rdf:type schema:PublicationVolume
    198 Nbc1621ce5614411caa7baf74baa71831 schema:name doi
    199 schema:value 10.1038/s41598-021-96339-y
    200 rdf:type schema:PropertyValue
    201 Nc6c3ceb106c9454c9726351fc864c1c2 schema:issueNumber 1
    202 rdf:type schema:PublicationIssue
    203 Ncf184e8f856e44bcb409f1d77dcc1cd2 rdf:first sg:person.011147337743.14
    204 rdf:rest N6241be3dd1774d0fb8bc6cfd838fa236
    205 Nd24f46164de74964b27590b978b16bd6 rdf:first sg:person.01064173222.00
    206 rdf:rest N0326203bd1594bc78dcf4ea68d8ab4ad
    207 Nd3e18ceca22d4eb2a5de03ff1a5ae49b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    208 schema:name Lactobacillus crispatus
    209 rdf:type schema:DefinedTerm
    210 Nd5a605342f1a49c5929b85bd30379f37 rdf:first sg:person.01243365040.42
    211 rdf:rest rdf:nil
    212 Ndf149544b71e4938bbaee44358f8308d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    213 schema:name Phylogeny
    214 rdf:type schema:DefinedTerm
    215 Ne0d869ae8988478c992a84410bea9c0d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    216 schema:name Premature Birth
    217 rdf:type schema:DefinedTerm
    218 Ne334eac8deaa4a6ebf122686d9d4f669 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    219 schema:name Microbiota
    220 rdf:type schema:DefinedTerm
    221 Ne9576b1780d6494dacf19cb6c2ab261d schema:name pubmed_id
    222 schema:value 34518588
    223 rdf:type schema:PropertyValue
    224 Neb3c723969d4435a9c4f1a92bd93441c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    225 schema:name Postpartum Period
    226 rdf:type schema:DefinedTerm
    227 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    228 schema:name Medical and Health Sciences
    229 rdf:type schema:DefinedTerm
    230 anzsrc-for:1114 schema:inDefinedTermSet anzsrc-for:
    231 schema:name Paediatrics and Reproductive Medicine
    232 rdf:type schema:DefinedTerm
    233 sg:grant.7072411 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-021-96339-y
    234 rdf:type schema:MonetaryGrant
    235 sg:journal.1045337 schema:issn 2045-2322
    236 schema:name Scientific Reports
    237 schema:publisher Springer Nature
    238 rdf:type schema:Periodical
    239 sg:person.01023412627.52 schema:affiliation grid-institutes:grid.66875.3a
    240 schema:familyName Chen
    241 schema:givenName Jun
    242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023412627.52
    243 rdf:type schema:Person
    244 sg:person.01064173222.00 schema:affiliation grid-institutes:grid.66875.3a
    245 schema:familyName Walther-Antonio
    246 schema:givenName Marina R. S.
    247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064173222.00
    248 rdf:type schema:Person
    249 sg:person.011147337743.14 schema:affiliation grid-institutes:grid.9582.6
    250 schema:familyName Odogwu
    251 schema:givenName Nkechi Martina
    252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011147337743.14
    253 rdf:type schema:Person
    254 sg:person.01120044210.73 schema:affiliation grid-institutes:grid.9582.6
    255 schema:familyName Olayemi
    256 schema:givenName Oladapo O.
    257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120044210.73
    258 rdf:type schema:Person
    259 sg:person.01132120772.66 schema:affiliation grid-institutes:grid.9582.6
    260 schema:familyName Ayeni
    261 schema:givenName Funmilola A.
    262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132120772.66
    263 rdf:type schema:Person
    264 sg:person.01212544443.79 schema:affiliation grid-institutes:grid.66875.3a
    265 schema:familyName Chia
    266 schema:givenName Nicholas
    267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212544443.79
    268 rdf:type schema:Person
    269 sg:person.01243365040.42 schema:affiliation grid-institutes:grid.9582.6
    270 schema:familyName Omigbodun
    271 schema:givenName Akinyinka O.
    272 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243365040.42
    273 rdf:type schema:Person
    274 sg:person.013305644153.43 schema:affiliation grid-institutes:grid.412438.8
    275 schema:familyName Onebunne
    276 schema:givenName Chinedum Amara
    277 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013305644153.43
    278 rdf:type schema:Person
    279 sg:pub.10.1007/s00357-014-9161-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1049678681
    280 https://doi.org/10.1007/s00357-014-9161-z
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1007/s10815-011-9694-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025571343
    283 https://doi.org/10.1007/s10815-011-9694-6
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1007/s11908-999-0045-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1018323127
    286 https://doi.org/10.1007/s11908-999-0045-z
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1038/ismej.2007.12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001560476
    289 https://doi.org/10.1038/ismej.2007.12
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1038/ismej.2010.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042916034
    292 https://doi.org/10.1038/ismej.2010.133
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1038/nbt.3601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002490773
    295 https://doi.org/10.1038/nbt.3601
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1038/nmeth.2276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039195944
    298 https://doi.org/10.1038/nmeth.2276
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1038/nmeth.3869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016631324
    301 https://doi.org/10.1038/nmeth.3869
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1038/nmeth.f.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009032055
    304 https://doi.org/10.1038/nmeth.f.303
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1038/nrmicro2473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003384875
    307 https://doi.org/10.1038/nrmicro2473
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1038/s41587-019-0209-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1119809350
    310 https://doi.org/10.1038/s41587-019-0209-9
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1038/s41591-019-0450-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1115985567
    313 https://doi.org/10.1038/s41591-019-0450-2
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1038/s41591-019-0465-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1115996513
    316 https://doi.org/10.1038/s41591-019-0465-8
    317 rdf:type schema:CreativeWork
    318 sg:pub.10.1038/s41598-017-07790-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091267060
    319 https://doi.org/10.1038/s41598-017-07790-9
    320 rdf:type schema:CreativeWork
    321 sg:pub.10.1038/srep08988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032618141
    322 https://doi.org/10.1038/srep08988
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1177/1933719113488838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029806918
    325 https://doi.org/10.1177/1933719113488838
    326 rdf:type schema:CreativeWork
    327 sg:pub.10.1186/1471-2180-9-116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003027770
    328 https://doi.org/10.1186/1471-2180-9-116
    329 rdf:type schema:CreativeWork
    330 sg:pub.10.1186/1471-2334-4-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017764187
    331 https://doi.org/10.1186/1471-2334-4-5
    332 rdf:type schema:CreativeWork
    333 sg:pub.10.1186/1471-2393-14-107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018197185
    334 https://doi.org/10.1186/1471-2393-14-107
    335 rdf:type schema:CreativeWork
    336 sg:pub.10.1186/2049-2618-2-23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049519112
    337 https://doi.org/10.1186/2049-2618-2-23
    338 rdf:type schema:CreativeWork
    339 sg:pub.10.1186/2049-2618-2-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042220655
    340 https://doi.org/10.1186/2049-2618-2-4
    341 rdf:type schema:CreativeWork
    342 sg:pub.10.1186/s12879-015-0831-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010357304
    343 https://doi.org/10.1186/s12879-015-0831-1
    344 rdf:type schema:CreativeWork
    345 sg:pub.10.1186/s12884-016-0937-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024827099
    346 https://doi.org/10.1186/s12884-016-0937-5
    347 rdf:type schema:CreativeWork
    348 sg:pub.10.1186/s40168-018-0502-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105206730
    349 https://doi.org/10.1186/s40168-018-0502-8
    350 rdf:type schema:CreativeWork
    351 grid-institutes:grid.412438.8 schema:alternateName Department of Obstetrics and Gynecology, University College Hospital, Ibadan, Nigeria
    352 schema:name Department of Obstetrics and Gynecology, University College Hospital, Ibadan, Nigeria
    353 rdf:type schema:Organization
    354 grid-institutes:grid.66875.3a schema:alternateName Department of Health Science Research, Mayo Clinic, Rochester, MN, USA
    355 Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
    356 Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
    357 schema:name Department of Health Science Research, Mayo Clinic, Rochester, MN, USA
    358 Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
    359 Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
    360 Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, MN, USA
    361 Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
    362 rdf:type schema:Organization
    363 grid-institutes:grid.9582.6 schema:alternateName Department of Obstetrics and Gynecology, College of Medicine, University of Ibadan, Ibadan, Nigeria
    364 Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
    365 schema:name Department of Obstetrics and Gynecology, College of Medicine, University of Ibadan, Ibadan, Nigeria
    366 Department of Obstetrics and Gynecology, University College Hospital, Ibadan, Nigeria
    367 Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
    368 Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, MN, USA
    369 Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
    370 Pan African University Life and Earth Sciences Institute (PAULESI), University of Ibadan, Ibadan, Oyo State, Nigeria
    371 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...