Possibility of information encoding/decoding using the memory effect in fractional-order capacitive devices View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-06-25

AUTHORS

Anis Allagui, Ahmed S. Elwakil

ABSTRACT

In this study, we show that the discharge voltage pattern of a supercapacitor exhibiting fractional-order behavior from the same initial steady-state voltage into a constant resistor is dependent on the past charging voltage profile. The charging voltage was designed to follow a power-law function, i.e. [Formula: see text], in which [Formula: see text] (charging time duration between zero voltage to the terminal voltage [Formula: see text]) and p ([Formula: see text]) act as two variable parameters. We used this history-dependence of the dynamic behavior of the device to uniquely retrieve information pre-coded in the charging waveform pattern. Furthermore, we provide an analytical model based on fractional calculus that explains phenomenologically the information storage mechanism. The use of this intrinsic material memory effect may lead to new types of methods for information storage and retrieval. More... »

PAGES

13306

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-021-92568-3

DOI

http://dx.doi.org/10.1038/s41598-021-92568-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1139147192

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/34172771


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174 USA", 
          "id": "http://www.grid.ac/institutes/grid.65456.34", 
          "name": [
            "Department of Sustainable and Renewable Energy Engineering, University of Sharjah, PO Box 27272 Sharjah, United Arab Emirates", 
            "Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272 Sharjah, United Arab Emirates", 
            "Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Allagui", 
        "givenName": "Anis", 
        "id": "sg:person.010454310475.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010454310475.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical and Computer Engineering, University of Calgary, Calgary, Alberta T2N 1N4 Canada", 
          "id": "http://www.grid.ac/institutes/grid.22072.35", 
          "name": [
            "Department of Electrical Engineering, University of Sharjah, PO Box 27272 Sharjah, United Arab Emirates", 
            "Nanoelectronics Integrated Systems Center, Nile University, Cairo, 12588 Egypt", 
            "Department of Electrical and Computer Engineering, University of Calgary, Calgary, Alberta T2N 1N4 Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elwakil", 
        "givenName": "Ahmed S.", 
        "id": "sg:person.013033721707.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033721707.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep03431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006208141", 
          "https://doi.org/10.1038/srep03431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep06577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031037226", 
          "https://doi.org/10.1038/srep06577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjst/e2011-01387-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029369443", 
          "https://doi.org/10.1140/epjst/e2011-01387-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/267673a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026117457", 
          "https://doi.org/10.1038/267673a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063784216020249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034628837", 
          "https://doi.org/10.1134/s1063784216020249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjst/e2011-01388-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022270978", 
          "https://doi.org/10.1140/epjst/e2011-01388-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep38568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001342930", 
          "https://doi.org/10.1038/srep38568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00206239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043382449", 
          "https://doi.org/10.1007/bf00206239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1515/fca-2016-0060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023426639", 
          "https://doi.org/10.1515/fca-2016-0060"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-06-25", 
    "datePublishedReg": "2021-06-25", 
    "description": "In this study, we show that the discharge voltage pattern of a supercapacitor exhibiting fractional-order behavior from the same initial steady-state voltage into a constant resistor is dependent on the past charging voltage profile. The charging voltage was designed to follow a power-law function, i.e. [Formula: see text], in which [Formula: see text] (charging time duration between zero voltage to the terminal voltage [Formula: see text]) and p ([Formula: see text]) act as two variable parameters. We used this history-dependence of the dynamic behavior of the device to uniquely retrieve information pre-coded in the charging waveform pattern. Furthermore, we provide an analytical model based on fractional calculus that explains phenomenologically the information storage mechanism. The use of this intrinsic material memory effect may lead to new types of methods for information storage and retrieval.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-021-92568-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "possibility of information", 
      "information storage mechanism", 
      "information storage", 
      "information", 
      "retrieval", 
      "devices", 
      "storage mechanism", 
      "dynamic behavior", 
      "new type", 
      "analytical model", 
      "voltage profile", 
      "variable parameters", 
      "fractional calculus", 
      "calculus", 
      "storage", 
      "constant resistor", 
      "model", 
      "method", 
      "patterns", 
      "behavior", 
      "use", 
      "voltage pattern", 
      "past", 
      "steady-state voltage", 
      "parameters", 
      "waveform patterns", 
      "possibility", 
      "function", 
      "types", 
      "mechanism", 
      "study", 
      "profile", 
      "voltage", 
      "resistors", 
      "memory effect", 
      "capacitive devices", 
      "effect", 
      "power-law function", 
      "fractional order behavior", 
      "supercapacitors", 
      "discharge voltage pattern", 
      "same initial steady-state voltage", 
      "initial steady-state voltage", 
      "intrinsic material memory effect", 
      "material memory effect", 
      "fractional-order capacitive devices"
    ], 
    "name": "Possibility of information encoding/decoding using the memory effect in fractional-order capacitive devices", 
    "pagination": "13306", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1139147192"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-021-92568-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "34172771"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-021-92568-3", 
      "https://app.dimensions.ai/details/publication/pub.1139147192"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T19:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_904.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-021-92568-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-92568-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-92568-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-92568-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-92568-3'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      22 PREDICATES      81 URIs      64 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-021-92568-3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N5f7c561c633f4a47a83a17ad14571a6f
4 schema:citation sg:pub.10.1007/bf00206239
5 sg:pub.10.1038/267673a0
6 sg:pub.10.1038/srep03431
7 sg:pub.10.1038/srep06577
8 sg:pub.10.1038/srep38568
9 sg:pub.10.1134/s1063784216020249
10 sg:pub.10.1140/epjst/e2011-01387-1
11 sg:pub.10.1140/epjst/e2011-01388-0
12 sg:pub.10.1515/fca-2016-0060
13 schema:datePublished 2021-06-25
14 schema:datePublishedReg 2021-06-25
15 schema:description In this study, we show that the discharge voltage pattern of a supercapacitor exhibiting fractional-order behavior from the same initial steady-state voltage into a constant resistor is dependent on the past charging voltage profile. The charging voltage was designed to follow a power-law function, i.e. [Formula: see text], in which [Formula: see text] (charging time duration between zero voltage to the terminal voltage [Formula: see text]) and p ([Formula: see text]) act as two variable parameters. We used this history-dependence of the dynamic behavior of the device to uniquely retrieve information pre-coded in the charging waveform pattern. Furthermore, we provide an analytical model based on fractional calculus that explains phenomenologically the information storage mechanism. The use of this intrinsic material memory effect may lead to new types of methods for information storage and retrieval.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree true
19 schema:isPartOf N39e4f3a1319141afaa31f717bc7b6ca7
20 N958fc19a718b447eb5cfdc2e8d1e0acf
21 sg:journal.1045337
22 schema:keywords analytical model
23 behavior
24 calculus
25 capacitive devices
26 constant resistor
27 devices
28 discharge voltage pattern
29 dynamic behavior
30 effect
31 fractional calculus
32 fractional order behavior
33 fractional-order capacitive devices
34 function
35 information
36 information storage
37 information storage mechanism
38 initial steady-state voltage
39 intrinsic material memory effect
40 material memory effect
41 mechanism
42 memory effect
43 method
44 model
45 new type
46 parameters
47 past
48 patterns
49 possibility
50 possibility of information
51 power-law function
52 profile
53 resistors
54 retrieval
55 same initial steady-state voltage
56 steady-state voltage
57 storage
58 storage mechanism
59 study
60 supercapacitors
61 types
62 use
63 variable parameters
64 voltage
65 voltage pattern
66 voltage profile
67 waveform patterns
68 schema:name Possibility of information encoding/decoding using the memory effect in fractional-order capacitive devices
69 schema:pagination 13306
70 schema:productId N11f552946bb345eeb6bef1b89544acb0
71 N92ec07d2e66f477b9605462aeac9693d
72 Ne7bfc67f066b43758641c90e26deb963
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139147192
74 https://doi.org/10.1038/s41598-021-92568-3
75 schema:sdDatePublished 2022-01-01T19:00
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher Nfd1709553f2a4ff5bfc783707cb1c004
78 schema:url https://doi.org/10.1038/s41598-021-92568-3
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N11f552946bb345eeb6bef1b89544acb0 schema:name pubmed_id
83 schema:value 34172771
84 rdf:type schema:PropertyValue
85 N273568e79e184e50b2683ac096b7f665 rdf:first sg:person.013033721707.26
86 rdf:rest rdf:nil
87 N39e4f3a1319141afaa31f717bc7b6ca7 schema:issueNumber 1
88 rdf:type schema:PublicationIssue
89 N5f7c561c633f4a47a83a17ad14571a6f rdf:first sg:person.010454310475.66
90 rdf:rest N273568e79e184e50b2683ac096b7f665
91 N92ec07d2e66f477b9605462aeac9693d schema:name doi
92 schema:value 10.1038/s41598-021-92568-3
93 rdf:type schema:PropertyValue
94 N958fc19a718b447eb5cfdc2e8d1e0acf schema:volumeNumber 11
95 rdf:type schema:PublicationVolume
96 Ne7bfc67f066b43758641c90e26deb963 schema:name dimensions_id
97 schema:value pub.1139147192
98 rdf:type schema:PropertyValue
99 Nfd1709553f2a4ff5bfc783707cb1c004 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
102 schema:name Information and Computing Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
105 schema:name Artificial Intelligence and Image Processing
106 rdf:type schema:DefinedTerm
107 sg:journal.1045337 schema:issn 2045-2322
108 schema:name Scientific Reports
109 schema:publisher Springer Nature
110 rdf:type schema:Periodical
111 sg:person.010454310475.66 schema:affiliation grid-institutes:grid.65456.34
112 schema:familyName Allagui
113 schema:givenName Anis
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010454310475.66
115 rdf:type schema:Person
116 sg:person.013033721707.26 schema:affiliation grid-institutes:grid.22072.35
117 schema:familyName Elwakil
118 schema:givenName Ahmed S.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033721707.26
120 rdf:type schema:Person
121 sg:pub.10.1007/bf00206239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043382449
122 https://doi.org/10.1007/bf00206239
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/267673a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026117457
125 https://doi.org/10.1038/267673a0
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/srep03431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006208141
128 https://doi.org/10.1038/srep03431
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/srep06577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031037226
131 https://doi.org/10.1038/srep06577
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/srep38568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001342930
134 https://doi.org/10.1038/srep38568
135 rdf:type schema:CreativeWork
136 sg:pub.10.1134/s1063784216020249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034628837
137 https://doi.org/10.1134/s1063784216020249
138 rdf:type schema:CreativeWork
139 sg:pub.10.1140/epjst/e2011-01387-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029369443
140 https://doi.org/10.1140/epjst/e2011-01387-1
141 rdf:type schema:CreativeWork
142 sg:pub.10.1140/epjst/e2011-01388-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022270978
143 https://doi.org/10.1140/epjst/e2011-01388-0
144 rdf:type schema:CreativeWork
145 sg:pub.10.1515/fca-2016-0060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023426639
146 https://doi.org/10.1515/fca-2016-0060
147 rdf:type schema:CreativeWork
148 grid-institutes:grid.22072.35 schema:alternateName Department of Electrical and Computer Engineering, University of Calgary, Calgary, Alberta T2N 1N4 Canada
149 schema:name Department of Electrical Engineering, University of Sharjah, PO Box 27272 Sharjah, United Arab Emirates
150 Department of Electrical and Computer Engineering, University of Calgary, Calgary, Alberta T2N 1N4 Canada
151 Nanoelectronics Integrated Systems Center, Nile University, Cairo, 12588 Egypt
152 rdf:type schema:Organization
153 grid-institutes:grid.65456.34 schema:alternateName Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174 USA
154 schema:name Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174 USA
155 Department of Sustainable and Renewable Energy Engineering, University of Sharjah, PO Box 27272 Sharjah, United Arab Emirates
156 Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272 Sharjah, United Arab Emirates
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...