Prediagnostic circulating metabolites in female breast cancer cases with low and high mammographic breast density View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-06-22

AUTHORS

Benedetta Bendinelli, Alessia Vignoli, Domenico Palli, Melania Assedi, Daniela Ambrogetti, Claudio Luchinat, Saverio Caini, Calogero Saieva, Paola Turano, Giovanna Masala

ABSTRACT

Mammographic breast density (MBD) is a strong independent risk factor for breast cancer (BC). We designed a matched case–case study in the EPIC Florence cohort, to evaluate possible associations between the pre-diagnostic metabolomic profile and the risk of BC in high- versus low-MBD women who developed BC during the follow-up. A case–case design with 100 low-MBD (MBD ≤ 25%) and 100 high-MDB BC cases (MBD > 50%) was performed. Matching variables included age, year and type of mammographic examination. 1H NMR metabolomic spectra were available for 87 complete case–case sets. The conditional logistic analyses showed an inverse association between serum levels of alanine, leucine, tyrosine, valine, lactic acid, pyruvic acid, triglycerides lipid main fraction and 11 VLDL lipid subfractions and high-MBD cases. Acetic acid was directly associated with high-MBD cases. In models adjusted for confounding variables, tyrosine remained inversely associated with high-MBD cases while 3 VLDL subfractions of free cholesterol emerged as directly associated with high-MBD cases. A pathway analysis showed that the “phenylalanine, tyrosine and tryptophan pathway” emerged and persisted after applying the FDR procedure. The supervised OPLS-DA analysis revealed a slight but significant separation between high- and low-MBD cases. This case–case study suggested a possible role for pre-diagnostic levels of tyrosine in modulating the risk of BC in high- versus low-MBD women. Moreover, some differences emerged in the pre-diagnostic concentration of other metabolites as well in the metabolomic fingerprints among the two groups of patients. More... »

PAGES

13025

References to SciGraph publications

  • 2013-11-04. Mammographic density and risk of breast cancer by age and tumor characteristics in BREAST CANCER RESEARCH
  • 2016-12-05. Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease in SCIENTIFIC REPORTS
  • 2011-11-01. Mammographic density and breast cancer risk: current understanding and future prospects in BREAST CANCER RESEARCH
  • 2005-10-20. Biomarkers in Cancer Staging, Prognosis and Treatment Selection in NATURE REVIEWS CANCER
  • 2020-01-18. Using MetaboAnalyst 4.0 for Metabolomics Data Analysis, Interpretation, and Integration with Other Omics Data in COMPUTATIONAL METHODS AND DATA ANALYSIS FOR METABOLOMICS
  • 2018-04-05. Breast density and breast cancer-specific survival by detection mode in BMC CANCER
  • 2019-09-24. Prospective analysis of circulating metabolites and breast cancer in EPIC in BMC MEDICINE
  • 2011-12-06. Clinical and epidemiological issues in mammographic density in NATURE REVIEWS CLINICAL ONCOLOGY
  • 2016-11-08. A Comparative Metabolomics Approach Reveals Early Biomarkers for Metabolic Response to Acute Myocardial Infarction in SCIENTIFIC REPORTS
  • 2008-10-22. Metabonomics in NATURE
  • 2017-03-13. Plasma-free amino acid profiles are predictors of cancer and diabetes development in NUTRITION & DIABETES
  • 2019-08-29. Metabolomic analysis of serum may refine 21-gene expression assay risk recurrence stratification in NPJ BREAST CANCER
  • 2013-09-04. Association between mammographic density and basal-like and luminal A breast cancer subtypes in BREAST CANCER RESEARCH
  • 1989-06. Ki67 immunostaining in primary breast cancer: pathological and clinical associations in BRITISH JOURNAL OF CANCER
  • 2002-11-25. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics in NATURE MEDICINE
  • 2019-06-08. A review of the influence of mammographic density on breast cancer clinical and pathological phenotype in BREAST CANCER RESEARCH AND TREATMENT
  • 2019-03-01. Updating the role of obesity and cholesterol in breast cancer in BREAST CANCER RESEARCH
  • 2017-05-06. Mammographic breast density and breast cancer risk in a Mediterranean population: a nested case–control study in the EPIC Florence cohort in BREAST CANCER RESEARCH AND TREATMENT
  • 2017-10-17. Assessing biological and technological variability in protein levels measured in pre-diagnostic plasma samples of women with breast cancer in BIOMARKER RESEARCH
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-021-92508-1

    DOI

    http://dx.doi.org/10.1038/s41598-021-92508-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1139030919

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/34158597


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Breast Density", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Breast Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Discriminant Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Least-Squares Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lipids", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lipoproteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mammography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metabolome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Principal Component Analysis", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50139, Florence, Italy", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50139, Florence, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bendinelli", 
            "givenName": "Benedetta", 
            "id": "sg:person.0615025337.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615025337.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Consorzio Interuniversitario Risonanze Magnetiche Di Metallo Proteine (CIRMMP), 50019, Sesto Fiorentino, Italy", 
              "id": "http://www.grid.ac/institutes/grid.20765.36", 
              "name": [
                "Consorzio Interuniversitario Risonanze Magnetiche Di Metallo Proteine (CIRMMP), 50019, Sesto Fiorentino, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vignoli", 
            "givenName": "Alessia", 
            "id": "sg:person.013315476401.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013315476401.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50139, Florence, Italy", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50139, Florence, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Palli", 
            "givenName": "Domenico", 
            "id": "sg:person.010014537677.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010014537677.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50139, Florence, Italy", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50139, Florence, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Assedi", 
            "givenName": "Melania", 
            "id": "sg:person.01272316237.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272316237.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50139, Florence, Italy", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50139, Florence, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ambrogetti", 
            "givenName": "Daniela", 
            "id": "sg:person.01012362050.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012362050.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Chemistry \u201cUgo Schiff\u201d, University of Florence, 50019, Sesto Fiorentino, Italy", 
              "id": "http://www.grid.ac/institutes/grid.8404.8", 
              "name": [
                "Magnetic Resonance Center (CERM), University of Florence, 50019, Sesto Fiorentino, Italy", 
                "Department of Chemistry \u201cUgo Schiff\u201d, University of Florence, 50019, Sesto Fiorentino, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Luchinat", 
            "givenName": "Claudio", 
            "id": "sg:person.0750040044.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750040044.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50139, Florence, Italy", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50139, Florence, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Caini", 
            "givenName": "Saverio", 
            "id": "sg:person.01161605365.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161605365.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50139, Florence, Italy", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50139, Florence, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Saieva", 
            "givenName": "Calogero", 
            "id": "sg:person.0673106145.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673106145.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Chemistry \u201cUgo Schiff\u201d, University of Florence, 50019, Sesto Fiorentino, Italy", 
              "id": "http://www.grid.ac/institutes/grid.8404.8", 
              "name": [
                "Magnetic Resonance Center (CERM), University of Florence, 50019, Sesto Fiorentino, Italy", 
                "Department of Chemistry \u201cUgo Schiff\u201d, University of Florence, 50019, Sesto Fiorentino, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Turano", 
            "givenName": "Paola", 
            "id": "sg:person.01115125451.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115125451.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50139, Florence, Italy", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50139, Florence, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Masala", 
            "givenName": "Giovanna", 
            "id": "sg:person.01215545050.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215545050.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/bcr3470", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011965809", 
              "https://doi.org/10.1186/bcr3470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc1739", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048794721", 
              "https://doi.org/10.1038/nrc1739"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-016-0001-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085379182", 
              "https://doi.org/10.1038/s41598-016-0001-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-017-4274-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085200965", 
              "https://doi.org/10.1007/s10549-017-4274-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nutd.2016.55", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084129889", 
              "https://doi.org/10.1038/nutd.2016.55"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/bcr2942", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008028099", 
              "https://doi.org/10.1186/bcr2942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm1202-802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030228780", 
              "https://doi.org/10.1038/nm1202-802"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13058-019-1124-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112468157", 
              "https://doi.org/10.1186/s13058-019-1124-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12885-018-4316-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103128503", 
              "https://doi.org/10.1186/s12885-018-4316-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-019-05300-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1116997443", 
              "https://doi.org/10.1007/s10549-019-05300-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep36359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013677905", 
              "https://doi.org/10.1038/srep36359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/bcr3570", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052027154", 
              "https://doi.org/10.1186/bcr3570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrclinonc.2011.173", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005052979", 
              "https://doi.org/10.1038/nrclinonc.2011.173"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/4551054a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027018706", 
              "https://doi.org/10.1038/4551054a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12916-019-1408-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1121196978", 
              "https://doi.org/10.1186/s12916-019-1408-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-0716-0239-3_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124150488", 
              "https://doi.org/10.1007/978-1-0716-0239-3_17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.1989.200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040502985", 
              "https://doi.org/10.1038/bjc.1989.200"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40364-017-0110-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092264585", 
              "https://doi.org/10.1186/s40364-017-0110-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41523-019-0123-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120697834", 
              "https://doi.org/10.1038/s41523-019-0123-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-06-22", 
        "datePublishedReg": "2021-06-22", 
        "description": "Mammographic breast density (MBD) is a strong independent risk factor for breast cancer (BC). We designed a matched case\u2013case study in the EPIC Florence cohort, to evaluate possible associations between the pre-diagnostic metabolomic profile and the risk of BC in high- versus low-MBD women who developed BC during the follow-up. A case\u2013case design with 100 low-MBD (MBD\u2009\u2264\u200925%) and 100 high-MDB BC cases (MBD\u2009>\u200950%)\u00a0was performed. Matching variables included age, year and type of mammographic examination. 1H NMR metabolomic spectra were available for 87 complete case\u2013case sets. The conditional logistic analyses showed an inverse association between serum levels of alanine, leucine, tyrosine, valine, lactic acid, pyruvic acid, triglycerides lipid main fraction and 11 VLDL lipid subfractions and high-MBD cases. Acetic acid was directly associated with high-MBD cases. In models adjusted for confounding variables, tyrosine remained inversely associated with high-MBD cases while 3 VLDL subfractions of free cholesterol emerged as directly associated with high-MBD cases. A pathway analysis showed that the \u201cphenylalanine, tyrosine and tryptophan pathway\u201d emerged and persisted after applying the FDR procedure. The supervised OPLS-DA analysis revealed a slight but significant separation between high- and low-MBD cases. This case\u2013case study suggested a possible role for pre-diagnostic levels of tyrosine in modulating the risk of BC in high- versus low-MBD women. Moreover, some differences emerged in the pre-diagnostic concentration of other metabolites as well in the metabolomic fingerprints among the two groups of patients.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-021-92508-1", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "keywords": [
          "mammographic breast density", 
          "risk of BC", 
          "case-case study", 
          "breast cancer", 
          "breast density", 
          "high mammographic breast density", 
          "strong independent risk factor", 
          "EPIC-Florence cohort", 
          "case-case design", 
          "pre-diagnostic concentrations", 
          "independent risk factor", 
          "female breast cancer cases", 
          "group of patients", 
          "pre-diagnostic levels", 
          "breast cancer cases", 
          "conditional logistic analysis", 
          "OPLS-DA analysis", 
          "serum levels", 
          "lipid subfractions", 
          "risk factors", 
          "inverse association", 
          "VLDL subfractions", 
          "cancer cases", 
          "BC cases", 
          "logistic analysis", 
          "possible association", 
          "mammographic examinations", 
          "free cholesterol", 
          "metabolomic profiles", 
          "possible role", 
          "matching variables", 
          "pathway analysis", 
          "women", 
          "metabolomic fingerprint", 
          "tryptophan pathway", 
          "risk", 
          "association", 
          "subfractions", 
          "metabolites", 
          "metabolomic spectra", 
          "patients", 
          "cases", 
          "cohort", 
          "triglycerides", 
          "cancer", 
          "cholesterol", 
          "significant separation", 
          "age", 
          "levels", 
          "tyrosine", 
          "study", 
          "examination", 
          "lactic acid", 
          "acid", 
          "group", 
          "years", 
          "pyruvic acid", 
          "pathway", 
          "leucine", 
          "factors", 
          "differences", 
          "valine", 
          "variables", 
          "analysis", 
          "role", 
          "phenylalanine", 
          "procedure", 
          "profile", 
          "alanine", 
          "concentration", 
          "acetic acid", 
          "main fraction", 
          "types", 
          "fraction", 
          "model", 
          "density", 
          "FDR procedure", 
          "design", 
          "fingerprints", 
          "spectra", 
          "separation", 
          "set"
        ], 
        "name": "Prediagnostic circulating metabolites in female breast cancer cases with low and high mammographic breast density", 
        "pagination": "13025", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1139030919"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-021-92508-1"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "34158597"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-021-92508-1", 
          "https://app.dimensions.ai/details/publication/pub.1139030919"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T10:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_881.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-021-92508-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-92508-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-92508-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-92508-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-92508-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    341 TRIPLES      22 PREDICATES      140 URIs      113 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-021-92508-1 schema:about N11595b9060ae493db55dd43043566550
    2 N151784460eec48bcb362d8497169fca6
    3 N194cbfddb1eb4678bc37863b2aa3fd8e
    4 N1ff2fe3890d84bdf9baf07a9e65a582c
    5 N232ad699f39440dca98978f46148826b
    6 N28f7dcfcfbe8453baa6c90019662be5f
    7 N3db809d4b64c405cb25bf4dc9155e799
    8 N7dbb51c4540f49428dbcacb3b7716c27
    9 Na7b8cf46f262459e89ba297ee2d42331
    10 Naa9ba9e268064919b5574f94c4ce4fef
    11 Nb5aec798461d4c819e83898ebedd6a1f
    12 Ne21b1dfce0964691952f38400edf0e00
    13 Nf6b456ccc9dc42d488f34aef0e97c6c0
    14 anzsrc-for:11
    15 anzsrc-for:1112
    16 schema:author N766e927d926749728e94980141fe9d32
    17 schema:citation sg:pub.10.1007/978-1-0716-0239-3_17
    18 sg:pub.10.1007/s10549-017-4274-9
    19 sg:pub.10.1007/s10549-019-05300-1
    20 sg:pub.10.1038/4551054a
    21 sg:pub.10.1038/bjc.1989.200
    22 sg:pub.10.1038/nm1202-802
    23 sg:pub.10.1038/nrc1739
    24 sg:pub.10.1038/nrclinonc.2011.173
    25 sg:pub.10.1038/nutd.2016.55
    26 sg:pub.10.1038/s41523-019-0123-9
    27 sg:pub.10.1038/s41598-016-0001-8
    28 sg:pub.10.1038/srep36359
    29 sg:pub.10.1186/bcr2942
    30 sg:pub.10.1186/bcr3470
    31 sg:pub.10.1186/bcr3570
    32 sg:pub.10.1186/s12885-018-4316-7
    33 sg:pub.10.1186/s12916-019-1408-4
    34 sg:pub.10.1186/s13058-019-1124-1
    35 sg:pub.10.1186/s40364-017-0110-y
    36 schema:datePublished 2021-06-22
    37 schema:datePublishedReg 2021-06-22
    38 schema:description Mammographic breast density (MBD) is a strong independent risk factor for breast cancer (BC). We designed a matched case–case study in the EPIC Florence cohort, to evaluate possible associations between the pre-diagnostic metabolomic profile and the risk of BC in high- versus low-MBD women who developed BC during the follow-up. A case–case design with 100 low-MBD (MBD ≤ 25%) and 100 high-MDB BC cases (MBD > 50%) was performed. Matching variables included age, year and type of mammographic examination. 1H NMR metabolomic spectra were available for 87 complete case–case sets. The conditional logistic analyses showed an inverse association between serum levels of alanine, leucine, tyrosine, valine, lactic acid, pyruvic acid, triglycerides lipid main fraction and 11 VLDL lipid subfractions and high-MBD cases. Acetic acid was directly associated with high-MBD cases. In models adjusted for confounding variables, tyrosine remained inversely associated with high-MBD cases while 3 VLDL subfractions of free cholesterol emerged as directly associated with high-MBD cases. A pathway analysis showed that the “phenylalanine, tyrosine and tryptophan pathway” emerged and persisted after applying the FDR procedure. The supervised OPLS-DA analysis revealed a slight but significant separation between high- and low-MBD cases. This case–case study suggested a possible role for pre-diagnostic levels of tyrosine in modulating the risk of BC in high- versus low-MBD women. Moreover, some differences emerged in the pre-diagnostic concentration of other metabolites as well in the metabolomic fingerprints among the two groups of patients.
    39 schema:genre article
    40 schema:inLanguage en
    41 schema:isAccessibleForFree true
    42 schema:isPartOf N5dfd795b48774ea7b9bea6e690525134
    43 Nc084b0cfaf224d88b439736999cdc802
    44 sg:journal.1045337
    45 schema:keywords BC cases
    46 EPIC-Florence cohort
    47 FDR procedure
    48 OPLS-DA analysis
    49 VLDL subfractions
    50 acetic acid
    51 acid
    52 age
    53 alanine
    54 analysis
    55 association
    56 breast cancer
    57 breast cancer cases
    58 breast density
    59 cancer
    60 cancer cases
    61 case-case design
    62 case-case study
    63 cases
    64 cholesterol
    65 cohort
    66 concentration
    67 conditional logistic analysis
    68 density
    69 design
    70 differences
    71 examination
    72 factors
    73 female breast cancer cases
    74 fingerprints
    75 fraction
    76 free cholesterol
    77 group
    78 group of patients
    79 high mammographic breast density
    80 independent risk factor
    81 inverse association
    82 lactic acid
    83 leucine
    84 levels
    85 lipid subfractions
    86 logistic analysis
    87 main fraction
    88 mammographic breast density
    89 mammographic examinations
    90 matching variables
    91 metabolites
    92 metabolomic fingerprint
    93 metabolomic profiles
    94 metabolomic spectra
    95 model
    96 pathway
    97 pathway analysis
    98 patients
    99 phenylalanine
    100 possible association
    101 possible role
    102 pre-diagnostic concentrations
    103 pre-diagnostic levels
    104 procedure
    105 profile
    106 pyruvic acid
    107 risk
    108 risk factors
    109 risk of BC
    110 role
    111 separation
    112 serum levels
    113 set
    114 significant separation
    115 spectra
    116 strong independent risk factor
    117 study
    118 subfractions
    119 triglycerides
    120 tryptophan pathway
    121 types
    122 tyrosine
    123 valine
    124 variables
    125 women
    126 years
    127 schema:name Prediagnostic circulating metabolites in female breast cancer cases with low and high mammographic breast density
    128 schema:pagination 13025
    129 schema:productId N093093de74ff406dab86176979ffbe4e
    130 N8d571bbb8e5f4657b951c68c4b03a758
    131 Ncafe260730f244ec9409a6f10ed92b22
    132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139030919
    133 https://doi.org/10.1038/s41598-021-92508-1
    134 schema:sdDatePublished 2022-05-10T10:30
    135 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    136 schema:sdPublisher N049bef801aef4facb8376d05856821c4
    137 schema:url https://doi.org/10.1038/s41598-021-92508-1
    138 sgo:license sg:explorer/license/
    139 sgo:sdDataset articles
    140 rdf:type schema:ScholarlyArticle
    141 N01e2f052105d4565bc43c105b57771fc rdf:first sg:person.013315476401.33
    142 rdf:rest N9e1603f04eed45f0811f45adb449c6c2
    143 N049bef801aef4facb8376d05856821c4 schema:name Springer Nature - SN SciGraph project
    144 rdf:type schema:Organization
    145 N093093de74ff406dab86176979ffbe4e schema:name dimensions_id
    146 schema:value pub.1139030919
    147 rdf:type schema:PropertyValue
    148 N11595b9060ae493db55dd43043566550 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Humans
    150 rdf:type schema:DefinedTerm
    151 N151784460eec48bcb362d8497169fca6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Adult
    153 rdf:type schema:DefinedTerm
    154 N194cbfddb1eb4678bc37863b2aa3fd8e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Female
    156 rdf:type schema:DefinedTerm
    157 N1ff2fe3890d84bdf9baf07a9e65a582c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Lipoproteins
    159 rdf:type schema:DefinedTerm
    160 N232ad699f39440dca98978f46148826b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Metabolome
    162 rdf:type schema:DefinedTerm
    163 N28f7dcfcfbe8453baa6c90019662be5f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Principal Component Analysis
    165 rdf:type schema:DefinedTerm
    166 N364d2de4c7844963af67f31f053e5236 rdf:first sg:person.01012362050.20
    167 rdf:rest Nbbd8999af3094c28b97ace7e48d94a51
    168 N3db809d4b64c405cb25bf4dc9155e799 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name Least-Squares Analysis
    170 rdf:type schema:DefinedTerm
    171 N40cb46e3e2684fe9bed7a60a0d92b004 rdf:first sg:person.01215545050.27
    172 rdf:rest rdf:nil
    173 N44f68410930d494e9224880b4cd158e5 rdf:first sg:person.01115125451.00
    174 rdf:rest N40cb46e3e2684fe9bed7a60a0d92b004
    175 N47a0731216434b46b9cb02c2ecde02f5 rdf:first sg:person.01272316237.15
    176 rdf:rest N364d2de4c7844963af67f31f053e5236
    177 N5dfd795b48774ea7b9bea6e690525134 schema:issueNumber 1
    178 rdf:type schema:PublicationIssue
    179 N766e927d926749728e94980141fe9d32 rdf:first sg:person.0615025337.65
    180 rdf:rest N01e2f052105d4565bc43c105b57771fc
    181 N7db719cc99b349e7be6d3c0edd49743b rdf:first sg:person.0673106145.95
    182 rdf:rest N44f68410930d494e9224880b4cd158e5
    183 N7dbb51c4540f49428dbcacb3b7716c27 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    184 schema:name Breast Neoplasms
    185 rdf:type schema:DefinedTerm
    186 N8d571bbb8e5f4657b951c68c4b03a758 schema:name pubmed_id
    187 schema:value 34158597
    188 rdf:type schema:PropertyValue
    189 N9e1603f04eed45f0811f45adb449c6c2 rdf:first sg:person.010014537677.09
    190 rdf:rest N47a0731216434b46b9cb02c2ecde02f5
    191 Na7b8cf46f262459e89ba297ee2d42331 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    192 schema:name Mammography
    193 rdf:type schema:DefinedTerm
    194 Naa9ba9e268064919b5574f94c4ce4fef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    195 schema:name Breast Density
    196 rdf:type schema:DefinedTerm
    197 Nb5aec798461d4c819e83898ebedd6a1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    198 schema:name Lipids
    199 rdf:type schema:DefinedTerm
    200 Nbbd8999af3094c28b97ace7e48d94a51 rdf:first sg:person.0750040044.84
    201 rdf:rest Nc71ebc1b79934fda8bdb7a8a8b9684a3
    202 Nc084b0cfaf224d88b439736999cdc802 schema:volumeNumber 11
    203 rdf:type schema:PublicationVolume
    204 Nc71ebc1b79934fda8bdb7a8a8b9684a3 rdf:first sg:person.01161605365.07
    205 rdf:rest N7db719cc99b349e7be6d3c0edd49743b
    206 Ncafe260730f244ec9409a6f10ed92b22 schema:name doi
    207 schema:value 10.1038/s41598-021-92508-1
    208 rdf:type schema:PropertyValue
    209 Ne21b1dfce0964691952f38400edf0e00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    210 schema:name Middle Aged
    211 rdf:type schema:DefinedTerm
    212 Nf6b456ccc9dc42d488f34aef0e97c6c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    213 schema:name Discriminant Analysis
    214 rdf:type schema:DefinedTerm
    215 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    216 schema:name Medical and Health Sciences
    217 rdf:type schema:DefinedTerm
    218 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    219 schema:name Oncology and Carcinogenesis
    220 rdf:type schema:DefinedTerm
    221 sg:journal.1045337 schema:issn 2045-2322
    222 schema:name Scientific Reports
    223 schema:publisher Springer Nature
    224 rdf:type schema:Periodical
    225 sg:person.010014537677.09 schema:affiliation grid-institutes:None
    226 schema:familyName Palli
    227 schema:givenName Domenico
    228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010014537677.09
    229 rdf:type schema:Person
    230 sg:person.01012362050.20 schema:affiliation grid-institutes:None
    231 schema:familyName Ambrogetti
    232 schema:givenName Daniela
    233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012362050.20
    234 rdf:type schema:Person
    235 sg:person.01115125451.00 schema:affiliation grid-institutes:grid.8404.8
    236 schema:familyName Turano
    237 schema:givenName Paola
    238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115125451.00
    239 rdf:type schema:Person
    240 sg:person.01161605365.07 schema:affiliation grid-institutes:None
    241 schema:familyName Caini
    242 schema:givenName Saverio
    243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161605365.07
    244 rdf:type schema:Person
    245 sg:person.01215545050.27 schema:affiliation grid-institutes:None
    246 schema:familyName Masala
    247 schema:givenName Giovanna
    248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215545050.27
    249 rdf:type schema:Person
    250 sg:person.01272316237.15 schema:affiliation grid-institutes:None
    251 schema:familyName Assedi
    252 schema:givenName Melania
    253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272316237.15
    254 rdf:type schema:Person
    255 sg:person.013315476401.33 schema:affiliation grid-institutes:grid.20765.36
    256 schema:familyName Vignoli
    257 schema:givenName Alessia
    258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013315476401.33
    259 rdf:type schema:Person
    260 sg:person.0615025337.65 schema:affiliation grid-institutes:None
    261 schema:familyName Bendinelli
    262 schema:givenName Benedetta
    263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615025337.65
    264 rdf:type schema:Person
    265 sg:person.0673106145.95 schema:affiliation grid-institutes:None
    266 schema:familyName Saieva
    267 schema:givenName Calogero
    268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673106145.95
    269 rdf:type schema:Person
    270 sg:person.0750040044.84 schema:affiliation grid-institutes:grid.8404.8
    271 schema:familyName Luchinat
    272 schema:givenName Claudio
    273 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750040044.84
    274 rdf:type schema:Person
    275 sg:pub.10.1007/978-1-0716-0239-3_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124150488
    276 https://doi.org/10.1007/978-1-0716-0239-3_17
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1007/s10549-017-4274-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085200965
    279 https://doi.org/10.1007/s10549-017-4274-9
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1007/s10549-019-05300-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1116997443
    282 https://doi.org/10.1007/s10549-019-05300-1
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1038/4551054a schema:sameAs https://app.dimensions.ai/details/publication/pub.1027018706
    285 https://doi.org/10.1038/4551054a
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1038/bjc.1989.200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040502985
    288 https://doi.org/10.1038/bjc.1989.200
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1038/nm1202-802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030228780
    291 https://doi.org/10.1038/nm1202-802
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1038/nrc1739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048794721
    294 https://doi.org/10.1038/nrc1739
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1038/nrclinonc.2011.173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005052979
    297 https://doi.org/10.1038/nrclinonc.2011.173
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1038/nutd.2016.55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129889
    300 https://doi.org/10.1038/nutd.2016.55
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1038/s41523-019-0123-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120697834
    303 https://doi.org/10.1038/s41523-019-0123-9
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1038/s41598-016-0001-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085379182
    306 https://doi.org/10.1038/s41598-016-0001-8
    307 rdf:type schema:CreativeWork
    308 sg:pub.10.1038/srep36359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013677905
    309 https://doi.org/10.1038/srep36359
    310 rdf:type schema:CreativeWork
    311 sg:pub.10.1186/bcr2942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008028099
    312 https://doi.org/10.1186/bcr2942
    313 rdf:type schema:CreativeWork
    314 sg:pub.10.1186/bcr3470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011965809
    315 https://doi.org/10.1186/bcr3470
    316 rdf:type schema:CreativeWork
    317 sg:pub.10.1186/bcr3570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052027154
    318 https://doi.org/10.1186/bcr3570
    319 rdf:type schema:CreativeWork
    320 sg:pub.10.1186/s12885-018-4316-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103128503
    321 https://doi.org/10.1186/s12885-018-4316-7
    322 rdf:type schema:CreativeWork
    323 sg:pub.10.1186/s12916-019-1408-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121196978
    324 https://doi.org/10.1186/s12916-019-1408-4
    325 rdf:type schema:CreativeWork
    326 sg:pub.10.1186/s13058-019-1124-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112468157
    327 https://doi.org/10.1186/s13058-019-1124-1
    328 rdf:type schema:CreativeWork
    329 sg:pub.10.1186/s40364-017-0110-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1092264585
    330 https://doi.org/10.1186/s40364-017-0110-y
    331 rdf:type schema:CreativeWork
    332 grid-institutes:None schema:alternateName Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50139, Florence, Italy
    333 schema:name Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50139, Florence, Italy
    334 rdf:type schema:Organization
    335 grid-institutes:grid.20765.36 schema:alternateName Consorzio Interuniversitario Risonanze Magnetiche Di Metallo Proteine (CIRMMP), 50019, Sesto Fiorentino, Italy
    336 schema:name Consorzio Interuniversitario Risonanze Magnetiche Di Metallo Proteine (CIRMMP), 50019, Sesto Fiorentino, Italy
    337 rdf:type schema:Organization
    338 grid-institutes:grid.8404.8 schema:alternateName Department of Chemistry “Ugo Schiff”, University of Florence, 50019, Sesto Fiorentino, Italy
    339 schema:name Department of Chemistry “Ugo Schiff”, University of Florence, 50019, Sesto Fiorentino, Italy
    340 Magnetic Resonance Center (CERM), University of Florence, 50019, Sesto Fiorentino, Italy
    341 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...