Combined nano and micro structuring for enhanced radiative cooling and efficiency of photovoltaic cells View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-06-02

AUTHORS

George Perrakis, Anna C. Tasolamprou, George Kenanakis, Eleftherios N. Economou, Stelios Tzortzakis, Maria Kafesaki

ABSTRACT

Outdoor devices comprising materials with mid-IR emissions at the atmospheric window (8–13 μm) achieve passive heat dissipation to outer space (~ − 270 °C), besides the atmosphere, being suitable for cooling applications. Recent studies have shown that the micro-scale photonic patterning of such materials further enhances their spectral emissivity. This approach is crucial, especially for daytime operation, where solar radiation often increases the device heat load. However, micro-scale patterning is often sub-optimal for other wavelengths besides 8–13 μm, limiting the devices’ efficiency. Here, we show that the superposition of properly designed in-plane nano- and micro-scaled periodic patterns results in enhanced device performance in the case of solar cell applications. We apply this idea in scalable, few-micron-thick, and simple single-material (glass) radiative coolers on top of simple-planar Si substrates, where we show an ~ 25.4% solar absorption enhancement, combined with a ~ ≤ 5.8 °C temperature reduction. Utilizing a coupled opto-electro-thermal modeling we evaluate our nano-micro-scale cooler also in the case of selected, highly-efficient Si-based photovoltaic architectures, where we achieve an efficiency enhancement of ~ 3.1%, which is 2.3 times higher compared to common anti-reflection layers, while the operating temperature of the device also decreases. Besides the enhanced performance of our nano-micro-scale cooler, our approach of superimposing double- or multi-periodic gratings is generic and suitable in all cases where the performance of a device depends on its response on more than one frequency bands. More... »

PAGES

11552

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-021-91061-1

DOI

http://dx.doi.org/10.1038/s41598-021-91061-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1138510946

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/34079009


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Technology, University of Crete, Heraklion, Crete, Greece", 
          "id": "http://www.grid.ac/institutes/grid.8127.c", 
          "name": [
            "Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece", 
            "Department of Materials Science and Technology, University of Crete, Heraklion, Crete, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perrakis", 
        "givenName": "George", 
        "id": "sg:person.011630664247.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011630664247.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece", 
          "id": "http://www.grid.ac/institutes/grid.511958.1", 
          "name": [
            "Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tasolamprou", 
        "givenName": "Anna C.", 
        "id": "sg:person.01054275366.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054275366.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece", 
          "id": "http://www.grid.ac/institutes/grid.511958.1", 
          "name": [
            "Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kenanakis", 
        "givenName": "George", 
        "id": "sg:person.010454022431.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010454022431.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Crete, 71003, Heraklion, Crete, Greece", 
          "id": "http://www.grid.ac/institutes/grid.8127.c", 
          "name": [
            "Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece", 
            "Department of Physics, University of Crete, 71003, Heraklion, Crete, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Economou", 
        "givenName": "Eleftherios N.", 
        "id": "sg:person.016667117164.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016667117164.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Science Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar", 
          "id": "http://www.grid.ac/institutes/grid.412392.f", 
          "name": [
            "Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece", 
            "Department of Materials Science and Technology, University of Crete, Heraklion, Crete, Greece", 
            "Science Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tzortzakis", 
        "givenName": "Stelios", 
        "id": "sg:person.01323677153.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323677153.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Technology, University of Crete, Heraklion, Crete, Greece", 
          "id": "http://www.grid.ac/institutes/grid.8127.c", 
          "name": [
            "Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece", 
            "Department of Materials Science and Technology, University of Crete, Heraklion, Crete, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kafesaki", 
        "givenName": "Maria", 
        "id": "sg:person.01041024471.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041024471.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ncomms13729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016580568", 
          "https://doi.org/10.1038/ncomms13729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-31257-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106394400", 
          "https://doi.org/10.1038/s41598-018-31257-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms7909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009813945", 
          "https://doi.org/10.1038/ncomms7909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-019-56847-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1123950493", 
          "https://doi.org/10.1038/s41598-019-56847-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-12502-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091916408", 
          "https://doi.org/10.1038/s41598-017-12502-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41377-020-0296-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1126910794", 
          "https://doi.org/10.1038/s41377-020-0296-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nenergy.2017.143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091431407", 
          "https://doi.org/10.1038/nenergy.2017.143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004962943", 
          "https://doi.org/10.1038/nature13883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-020-60592-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1125117765", 
          "https://doi.org/10.1038/s41598-020-60592-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-06-02", 
    "datePublishedReg": "2021-06-02", 
    "description": "Outdoor devices comprising materials with mid-IR emissions at the atmospheric window (8\u201313\u00a0\u03bcm) achieve passive heat dissipation to outer space (~\u2009\u2212 270\u00a0\u00b0C), besides the atmosphere, being suitable for cooling applications. Recent studies have shown that the micro-scale photonic patterning of such materials further enhances their spectral emissivity. This approach is crucial, especially for daytime operation, where solar radiation often increases the device heat load. However, micro-scale patterning is often sub-optimal for other wavelengths besides 8\u201313\u00a0\u03bcm, limiting the devices\u2019 efficiency. Here, we show that the superposition of properly designed in-plane nano- and micro-scaled periodic patterns results in enhanced device performance in the case of solar cell applications. We apply this idea in scalable, few-micron-thick, and simple single-material (glass) radiative coolers on top of simple-planar Si substrates, where we show an\u2009~\u200925.4% solar absorption enhancement, combined with a\u2009~\u2009\u2009\u2264\u20095.8\u00a0\u00b0C temperature reduction. Utilizing a coupled opto-electro-thermal modeling we evaluate our nano-micro-scale cooler also in the case of selected, highly-efficient Si-based photovoltaic architectures, where we achieve an efficiency enhancement of\u2009~\u20093.1%, which is 2.3 times higher compared to common anti-reflection layers, while the operating temperature of the device also decreases. Besides the enhanced performance of our nano-micro-scale cooler, our approach of superimposing double- or multi-periodic gratings is generic and suitable in all cases where the performance of a device depends on its response on more than one frequency bands.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-021-91061-1", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5302782", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "solar absorption enhancement", 
      "electro-thermal modeling", 
      "enhanced device performance", 
      "anti-reflection layer", 
      "passive heat dissipation", 
      "micro-scale patterning", 
      "C temperature reduction", 
      "solar cell applications", 
      "radiative cooler", 
      "efficient Si", 
      "combined nano", 
      "heat load", 
      "mid-IR emission", 
      "device efficiency", 
      "device performance", 
      "outdoor devices", 
      "photovoltaic cells", 
      "heat dissipation", 
      "cell applications", 
      "spectral emissivity", 
      "efficiency enhancement", 
      "temperature reduction", 
      "enhanced performance", 
      "daytime operation", 
      "such materials", 
      "absorption enhancement", 
      "atmospheric window", 
      "radiative cooling", 
      "frequency band", 
      "solar radiation", 
      "cooler", 
      "Si", 
      "nano", 
      "devices", 
      "efficiency", 
      "outer space", 
      "performance", 
      "materials", 
      "photovoltaics", 
      "pattern results", 
      "patterning", 
      "emissivity", 
      "load", 
      "applications", 
      "dissipation", 
      "cooling", 
      "layer", 
      "enhancement", 
      "grating", 
      "wavelength", 
      "temperature", 
      "operation", 
      "radiation", 
      "modeling", 
      "emission", 
      "superposition", 
      "atmosphere", 
      "top", 
      "band", 
      "approach", 
      "window", 
      "reduction", 
      "results", 
      "time", 
      "cases", 
      "space", 
      "cells", 
      "study", 
      "response", 
      "idea", 
      "Recent studies"
    ], 
    "name": "Combined nano and micro structuring for enhanced radiative cooling and efficiency of photovoltaic cells", 
    "pagination": "11552", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1138510946"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-021-91061-1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "34079009"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-021-91061-1", 
      "https://app.dimensions.ai/details/publication/pub.1138510946"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_916.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-021-91061-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-91061-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-91061-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-91061-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-91061-1'


 

This table displays all metadata directly associated to this object as RDF triples.

223 TRIPLES      21 PREDICATES      107 URIs      88 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-021-91061-1 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 anzsrc-for:0912
4 anzsrc-for:0915
5 schema:author N692235fd3352460cae7102659da565da
6 schema:citation sg:pub.10.1038/nature13883
7 sg:pub.10.1038/ncomms13729
8 sg:pub.10.1038/ncomms7909
9 sg:pub.10.1038/nenergy.2017.143
10 sg:pub.10.1038/s41377-020-0296-x
11 sg:pub.10.1038/s41598-017-12502-4
12 sg:pub.10.1038/s41598-018-31257-0
13 sg:pub.10.1038/s41598-019-56847-4
14 sg:pub.10.1038/s41598-020-60592-4
15 schema:datePublished 2021-06-02
16 schema:datePublishedReg 2021-06-02
17 schema:description Outdoor devices comprising materials with mid-IR emissions at the atmospheric window (8–13 μm) achieve passive heat dissipation to outer space (~ − 270 °C), besides the atmosphere, being suitable for cooling applications. Recent studies have shown that the micro-scale photonic patterning of such materials further enhances their spectral emissivity. This approach is crucial, especially for daytime operation, where solar radiation often increases the device heat load. However, micro-scale patterning is often sub-optimal for other wavelengths besides 8–13 μm, limiting the devices’ efficiency. Here, we show that the superposition of properly designed in-plane nano- and micro-scaled periodic patterns results in enhanced device performance in the case of solar cell applications. We apply this idea in scalable, few-micron-thick, and simple single-material (glass) radiative coolers on top of simple-planar Si substrates, where we show an ~ 25.4% solar absorption enhancement, combined with a ~  ≤ 5.8 °C temperature reduction. Utilizing a coupled opto-electro-thermal modeling we evaluate our nano-micro-scale cooler also in the case of selected, highly-efficient Si-based photovoltaic architectures, where we achieve an efficiency enhancement of ~ 3.1%, which is 2.3 times higher compared to common anti-reflection layers, while the operating temperature of the device also decreases. Besides the enhanced performance of our nano-micro-scale cooler, our approach of superimposing double- or multi-periodic gratings is generic and suitable in all cases where the performance of a device depends on its response on more than one frequency bands.
18 schema:genre article
19 schema:isAccessibleForFree true
20 schema:isPartOf N6dbcc7ee78684890952a4ff4900b44a9
21 N757a3b4cd91c405792acd2ab739c468e
22 sg:journal.1045337
23 schema:keywords C temperature reduction
24 Recent studies
25 Si
26 absorption enhancement
27 anti-reflection layer
28 applications
29 approach
30 atmosphere
31 atmospheric window
32 band
33 cases
34 cell applications
35 cells
36 combined nano
37 cooler
38 cooling
39 daytime operation
40 device efficiency
41 device performance
42 devices
43 dissipation
44 efficiency
45 efficiency enhancement
46 efficient Si
47 electro-thermal modeling
48 emission
49 emissivity
50 enhanced device performance
51 enhanced performance
52 enhancement
53 frequency band
54 grating
55 heat dissipation
56 heat load
57 idea
58 layer
59 load
60 materials
61 micro-scale patterning
62 mid-IR emission
63 modeling
64 nano
65 operation
66 outdoor devices
67 outer space
68 passive heat dissipation
69 pattern results
70 patterning
71 performance
72 photovoltaic cells
73 photovoltaics
74 radiation
75 radiative cooler
76 radiative cooling
77 reduction
78 response
79 results
80 solar absorption enhancement
81 solar cell applications
82 solar radiation
83 space
84 spectral emissivity
85 study
86 such materials
87 superposition
88 temperature
89 temperature reduction
90 time
91 top
92 wavelength
93 window
94 schema:name Combined nano and micro structuring for enhanced radiative cooling and efficiency of photovoltaic cells
95 schema:pagination 11552
96 schema:productId N08904f453fc247e3b265f17e8b9d64c1
97 N42a8551c1dc44df497b0adb531bdbe44
98 Ne552d7c204d145ce92c40c48ccf2c9c3
99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138510946
100 https://doi.org/10.1038/s41598-021-91061-1
101 schema:sdDatePublished 2022-09-02T16:06
102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
103 schema:sdPublisher Nc6bab828425941d992b2071e77fcc50e
104 schema:url https://doi.org/10.1038/s41598-021-91061-1
105 sgo:license sg:explorer/license/
106 sgo:sdDataset articles
107 rdf:type schema:ScholarlyArticle
108 N08904f453fc247e3b265f17e8b9d64c1 schema:name dimensions_id
109 schema:value pub.1138510946
110 rdf:type schema:PropertyValue
111 N16f491ea6c614a9c85e53c59520ccefd rdf:first sg:person.01323677153.06
112 rdf:rest N6a63efa5e6c64e40ae9c6eba3d4614e1
113 N1771ce558769413a86795a4d1dca72b6 rdf:first sg:person.01054275366.45
114 rdf:rest Nfed94f4b64ef4417aaa4614408147fae
115 N42a8551c1dc44df497b0adb531bdbe44 schema:name pubmed_id
116 schema:value 34079009
117 rdf:type schema:PropertyValue
118 N672adb9c4ba84a58a0f7b109ca5c8aa1 rdf:first sg:person.016667117164.22
119 rdf:rest N16f491ea6c614a9c85e53c59520ccefd
120 N692235fd3352460cae7102659da565da rdf:first sg:person.011630664247.40
121 rdf:rest N1771ce558769413a86795a4d1dca72b6
122 N6a63efa5e6c64e40ae9c6eba3d4614e1 rdf:first sg:person.01041024471.31
123 rdf:rest rdf:nil
124 N6dbcc7ee78684890952a4ff4900b44a9 schema:volumeNumber 11
125 rdf:type schema:PublicationVolume
126 N757a3b4cd91c405792acd2ab739c468e schema:issueNumber 1
127 rdf:type schema:PublicationIssue
128 Nc6bab828425941d992b2071e77fcc50e schema:name Springer Nature - SN SciGraph project
129 rdf:type schema:Organization
130 Ne552d7c204d145ce92c40c48ccf2c9c3 schema:name doi
131 schema:value 10.1038/s41598-021-91061-1
132 rdf:type schema:PropertyValue
133 Nfed94f4b64ef4417aaa4614408147fae rdf:first sg:person.010454022431.55
134 rdf:rest N672adb9c4ba84a58a0f7b109ca5c8aa1
135 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
136 schema:name Engineering
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
139 schema:name Electrical and Electronic Engineering
140 rdf:type schema:DefinedTerm
141 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
142 schema:name Materials Engineering
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
145 schema:name Interdisciplinary Engineering
146 rdf:type schema:DefinedTerm
147 sg:grant.5302782 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-021-91061-1
148 rdf:type schema:MonetaryGrant
149 sg:journal.1045337 schema:issn 2045-2322
150 schema:name Scientific Reports
151 schema:publisher Springer Nature
152 rdf:type schema:Periodical
153 sg:person.01041024471.31 schema:affiliation grid-institutes:grid.8127.c
154 schema:familyName Kafesaki
155 schema:givenName Maria
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041024471.31
157 rdf:type schema:Person
158 sg:person.010454022431.55 schema:affiliation grid-institutes:grid.511958.1
159 schema:familyName Kenanakis
160 schema:givenName George
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010454022431.55
162 rdf:type schema:Person
163 sg:person.01054275366.45 schema:affiliation grid-institutes:grid.511958.1
164 schema:familyName Tasolamprou
165 schema:givenName Anna C.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054275366.45
167 rdf:type schema:Person
168 sg:person.011630664247.40 schema:affiliation grid-institutes:grid.8127.c
169 schema:familyName Perrakis
170 schema:givenName George
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011630664247.40
172 rdf:type schema:Person
173 sg:person.01323677153.06 schema:affiliation grid-institutes:grid.412392.f
174 schema:familyName Tzortzakis
175 schema:givenName Stelios
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323677153.06
177 rdf:type schema:Person
178 sg:person.016667117164.22 schema:affiliation grid-institutes:grid.8127.c
179 schema:familyName Economou
180 schema:givenName Eleftherios N.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016667117164.22
182 rdf:type schema:Person
183 sg:pub.10.1038/nature13883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004962943
184 https://doi.org/10.1038/nature13883
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/ncomms13729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016580568
187 https://doi.org/10.1038/ncomms13729
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/ncomms7909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009813945
190 https://doi.org/10.1038/ncomms7909
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/nenergy.2017.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091431407
193 https://doi.org/10.1038/nenergy.2017.143
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/s41377-020-0296-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1126910794
196 https://doi.org/10.1038/s41377-020-0296-x
197 rdf:type schema:CreativeWork
198 sg:pub.10.1038/s41598-017-12502-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091916408
199 https://doi.org/10.1038/s41598-017-12502-4
200 rdf:type schema:CreativeWork
201 sg:pub.10.1038/s41598-018-31257-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106394400
202 https://doi.org/10.1038/s41598-018-31257-0
203 rdf:type schema:CreativeWork
204 sg:pub.10.1038/s41598-019-56847-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123950493
205 https://doi.org/10.1038/s41598-019-56847-4
206 rdf:type schema:CreativeWork
207 sg:pub.10.1038/s41598-020-60592-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125117765
208 https://doi.org/10.1038/s41598-020-60592-4
209 rdf:type schema:CreativeWork
210 grid-institutes:grid.412392.f schema:alternateName Science Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
211 schema:name Department of Materials Science and Technology, University of Crete, Heraklion, Crete, Greece
212 Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece
213 Science Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
214 rdf:type schema:Organization
215 grid-institutes:grid.511958.1 schema:alternateName Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece
216 schema:name Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece
217 rdf:type schema:Organization
218 grid-institutes:grid.8127.c schema:alternateName Department of Materials Science and Technology, University of Crete, Heraklion, Crete, Greece
219 Department of Physics, University of Crete, 71003, Heraklion, Crete, Greece
220 schema:name Department of Materials Science and Technology, University of Crete, Heraklion, Crete, Greece
221 Department of Physics, University of Crete, 71003, Heraklion, Crete, Greece
222 Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece
223 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...