Ontology type: schema:ScholarlyArticle Open Access: True
2021-05-27
AUTHORSRachael T. Richardson, Alex C. Thompson, Andrew K. Wise, Elise A. Ajay, Niliksha Gunewardene, Stephen J. O’Leary, Paul R. Stoddart, James B. Fallon
ABSTRACTOptical stimulation is a paradigm-shifting approach to modulating neural activity that has the potential to overcome the issue of current spread that occurs with electrical stimulation by providing focused stimuli. But optical stimulation either requires high power infrared light or genetic modification of neurons to make them responsive to lower power visible light. This work examines optical activation of auditory neurons following optogenetic modification via AAV injection in two species (mouse and guinea pig). An Anc80 viral vector was used to express the channelrhodopsin variant ChR2-H134R fused to a fluorescent reporter gene under the control of the human synapsin-1 promoter. The AAV was administered directly to the cochlea (n = 33) or posterior semi-circular canal of C57BL/6 mice (n = 4) or to guinea pig cochleae (n = 6). Light (488 nm), electrical stimuli or the combination of these (hybrid stimulation) was delivered to the cochlea via a laser-coupled optical fibre and co-located platinum wire. Activation thresholds, spread of activation and stimulus interactions were obtained from multi-unit recordings from the central nucleus of the inferior colliculus of injected mice, as well as ChR2-H134R transgenic mice (n = 4). Expression of ChR2-H134R was examined by histology. In the mouse, transduction of auditory neurons by the Anc80 viral vector was most successful when injected at a neonatal age with up to 89% of neurons transduced. Auditory neuron transductions were not successful in guinea pigs. Inferior colliculus responses to optical stimuli were detected in a cochleotopic manner in all mice with ChR2-H134R expression. There was a significant correlation between lower activation thresholds in mice and higher proportions of transduced neurons. There was no difference in spread of activation between optical stimulation and electrical stimulation provided by the light/electrical delivery system used here (optical fibre with bonded 25 µm platinum/iridium wire). Hybrid stimulation, comprised of sub-threshold optical stimulation to ‘prime’ or raise the excitability of the neurons, lowered the threshold for electrical activation in most cases, but the impact on excitation width was more variable compared to transgenic mice. This study demonstrates the impact of opsin expression levels and expression pattern on optical and hybrid stimulation when considering optical or hybrid stimulation techniques for neuromodulation. More... »
PAGES11229
http://scigraph.springernature.com/pub.10.1038/s41598-021-90764-9
DOIhttp://dx.doi.org/10.1038/s41598-021-90764-9
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1138393938
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/34045604
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Neurosciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Acoustic Stimulation",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Animals",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Channelrhodopsins",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cochlea",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Electric Stimulation",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Genetic Vectors",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Guinea Pigs",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Mice",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Neurons",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Opsins",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Optogenetics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Medical Bionics Department, University of Melbourne, Parkville, VIC, Australia",
"id": "http://www.grid.ac/institutes/grid.1008.9",
"name": [
"The Bionics Institute, 3002, East Melbourne, VIC, Australia",
"Department of Surgery (Otolaryngology), University of Melbourne, The Royal Victorian Eye and Ear Hospital, 3002, East Melbourne, VIC, Australia",
"Medical Bionics Department, University of Melbourne, Parkville, VIC, Australia"
],
"type": "Organization"
},
"familyName": "Richardson",
"givenName": "Rachael T.",
"id": "sg:person.012706275437.15",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012706275437.15"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "The Bionics Institute, 3002, East Melbourne, VIC, Australia",
"id": "http://www.grid.ac/institutes/grid.431365.6",
"name": [
"The Bionics Institute, 3002, East Melbourne, VIC, Australia"
],
"type": "Organization"
},
"familyName": "Thompson",
"givenName": "Alex C.",
"id": "sg:person.012525562023.14",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012525562023.14"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Medical Bionics Department, University of Melbourne, Parkville, VIC, Australia",
"id": "http://www.grid.ac/institutes/grid.1008.9",
"name": [
"The Bionics Institute, 3002, East Melbourne, VIC, Australia",
"Department of Surgery (Otolaryngology), University of Melbourne, The Royal Victorian Eye and Ear Hospital, 3002, East Melbourne, VIC, Australia",
"Medical Bionics Department, University of Melbourne, Parkville, VIC, Australia"
],
"type": "Organization"
},
"familyName": "Wise",
"givenName": "Andrew K.",
"id": "sg:person.01036337620.95",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036337620.95"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, Australia",
"id": "http://www.grid.ac/institutes/grid.1008.9",
"name": [
"The Bionics Institute, 3002, East Melbourne, VIC, Australia",
"Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, Australia"
],
"type": "Organization"
},
"familyName": "Ajay",
"givenName": "Elise A.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "The Bionics Institute, 3002, East Melbourne, VIC, Australia",
"id": "http://www.grid.ac/institutes/grid.431365.6",
"name": [
"The Bionics Institute, 3002, East Melbourne, VIC, Australia"
],
"type": "Organization"
},
"familyName": "Gunewardene",
"givenName": "Niliksha",
"id": "sg:person.0646256021.38",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646256021.38"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Surgery (Otolaryngology), University of Melbourne, The Royal Victorian Eye and Ear Hospital, 3002, East Melbourne, VIC, Australia",
"id": "http://www.grid.ac/institutes/grid.410670.4",
"name": [
"Department of Surgery (Otolaryngology), University of Melbourne, The Royal Victorian Eye and Ear Hospital, 3002, East Melbourne, VIC, Australia"
],
"type": "Organization"
},
"familyName": "O\u2019Leary",
"givenName": "Stephen J.",
"id": "sg:person.01071147231.23",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071147231.23"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Faculty of Science, Engineering and Technology, Swinburne University of Technology, 3122, Hawthorn, VIC, Australia",
"id": "http://www.grid.ac/institutes/grid.1027.4",
"name": [
"Faculty of Science, Engineering and Technology, Swinburne University of Technology, 3122, Hawthorn, VIC, Australia"
],
"type": "Organization"
},
"familyName": "Stoddart",
"givenName": "Paul R.",
"id": "sg:person.01000515702.17",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000515702.17"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Medical Bionics Department, University of Melbourne, Parkville, VIC, Australia",
"id": "http://www.grid.ac/institutes/grid.1008.9",
"name": [
"The Bionics Institute, 3002, East Melbourne, VIC, Australia",
"Department of Surgery (Otolaryngology), University of Melbourne, The Royal Victorian Eye and Ear Hospital, 3002, East Melbourne, VIC, Australia",
"Medical Bionics Department, University of Melbourne, Parkville, VIC, Australia"
],
"type": "Organization"
},
"familyName": "Fallon",
"givenName": "James B.",
"id": "sg:person.0766001705.30",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766001705.30"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10162-003-3057-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050496042",
"https://doi.org/10.1007/s10162-003-3057-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41467-018-04146-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1103640980",
"https://doi.org/10.1038/s41467-018-04146-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10162-004-4026-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044719799",
"https://doi.org/10.1007/s10162-004-4026-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nn.4091",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049870880",
"https://doi.org/10.1038/nn.4091"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41467-019-11687-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1120395625",
"https://doi.org/10.1038/s41467-019-11687-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41598-018-21233-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1100925237",
"https://doi.org/10.1038/s41598-018-21233-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41467-019-09980-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1113811298",
"https://doi.org/10.1038/s41467-019-09980-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/srep45524",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084508627",
"https://doi.org/10.1038/srep45524"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-05-27",
"datePublishedReg": "2021-05-27",
"description": "Optical stimulation is a paradigm-shifting approach to modulating neural activity that has the potential to overcome the issue of current spread that occurs with electrical stimulation by providing focused stimuli. But optical stimulation either requires high power infrared light or genetic modification of neurons to make them responsive to lower power visible light. This work examines optical activation of auditory neurons following optogenetic modification via AAV injection in two species (mouse and guinea pig). An Anc80 viral vector was used to express the channelrhodopsin variant ChR2-H134R fused to a fluorescent reporter gene under the control of the human synapsin-1 promoter. The AAV was administered directly to the cochlea (n\u2009=\u200933) or posterior semi-circular canal of C57BL/6 mice (n\u2009=\u20094) or to guinea pig cochleae (n\u2009=\u20096). Light (488\u00a0nm), electrical stimuli or the combination of these (hybrid stimulation) was delivered to the cochlea via a laser-coupled optical fibre and co-located platinum wire. Activation thresholds, spread of activation and stimulus interactions were obtained from multi-unit recordings from the central nucleus of the inferior colliculus of injected mice, as well as ChR2-H134R transgenic mice (n\u2009=\u20094). Expression of ChR2-H134R was examined by histology. In the mouse, transduction of auditory neurons by the Anc80 viral vector was most successful when injected at a neonatal age with up to 89% of neurons transduced. Auditory neuron transductions were not successful in guinea pigs. Inferior colliculus responses to optical stimuli were detected in a cochleotopic manner in all mice with ChR2-H134R expression. There was a significant correlation between lower activation thresholds in mice and higher proportions of transduced neurons. There was no difference in spread of activation between optical stimulation and electrical stimulation provided by the light/electrical delivery system used here (optical fibre with bonded 25\u00a0\u00b5m platinum/iridium wire). Hybrid stimulation, comprised of sub-threshold optical stimulation to \u2018prime\u2019 or raise the excitability of the neurons, lowered the threshold for electrical activation in most cases, but the impact on excitation width was more variable compared to transgenic mice. This study demonstrates the impact of opsin expression levels and expression pattern on optical and hybrid stimulation when considering optical or hybrid stimulation techniques for neuromodulation.",
"genre": "article",
"id": "sg:pub.10.1038/s41598-021-90764-9",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1045337",
"issn": [
"2045-2322"
],
"name": "Scientific Reports",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "11"
}
],
"keywords": [
"auditory neurons",
"transgenic mice",
"electrical stimulation",
"posterior semi-circular canal",
"synapsin-1 promoter",
"human synapsin-1 promoter",
"viral vectors",
"semi-circular canals",
"neonatal age",
"C57BL/6 mice",
"multi-unit recordings",
"inferior colliculus",
"guinea pigs",
"central nucleus",
"AAV injection",
"neurons",
"mice",
"pig cochlea",
"electrical stimuli",
"optical stimulation",
"stimulation",
"stimulation techniques",
"neural activity",
"Inferior Colliculus Responses",
"cochlea",
"significant correlation",
"expression levels",
"hybrid stimulation",
"activation",
"stimulus interaction",
"spread of activation",
"higher proportion",
"current spread",
"lower activation",
"optogenetic modification",
"delivery system",
"paradigm-shifting approach",
"stimuli",
"electrical activation",
"expression patterns",
"most cases",
"colliculus",
"expression",
"hybrid activation",
"histology",
"excitability",
"neuromodulation",
"reporter gene",
"transduction",
"age",
"viral",
"injection",
"AAV",
"canal",
"pigs",
"spread",
"genetic modification",
"recordings",
"proportion",
"response",
"fluorescent reporter gene",
"differences",
"levels",
"opsin",
"control",
"activity",
"cases",
"genes",
"study",
"nucleus",
"impact",
"correlation",
"promoter",
"manner",
"optical activation",
"threshold",
"modification",
"combination",
"patterns",
"fibers",
"opsin expression levels",
"potential",
"optical stimuli",
"vector",
"primes",
"light",
"technique",
"interaction",
"approach",
"issues",
"system",
"species",
"wire",
"width",
"work",
"power",
"visible light",
"platinum wire",
"high power",
"excitation width",
"optical fiber",
"low-power visible light"
],
"name": "Viral-mediated transduction of auditory neurons with opsins for optical and hybrid activation",
"pagination": "11229",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1138393938"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/s41598-021-90764-9"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"34045604"
]
}
],
"sameAs": [
"https://doi.org/10.1038/s41598-021-90764-9",
"https://app.dimensions.ai/details/publication/pub.1138393938"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:33",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_918.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1038/s41598-021-90764-9"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-90764-9'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-90764-9'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-90764-9'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-90764-9'
This table displays all metadata directly associated to this object as RDF triples.
300 TRIPLES
22 PREDICATES
147 URIs
131 LITERALS
18 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1038/s41598-021-90764-9 | schema:about | N29c634230e36459285794aa17576d57b |
2 | ″ | ″ | N4834d12ea52b4220aaede0e112b10b5b |
3 | ″ | ″ | N4ef3046fa05f42848e98526f7fd6c98e |
4 | ″ | ″ | N6cb84506000143a0a285c883abecb367 |
5 | ″ | ″ | N867535d199b34b03a3380dbea724d867 |
6 | ″ | ″ | N906261c1cc2b4554aa38b4cc781d2f01 |
7 | ″ | ″ | N9edcc6fa9182494a82cddb687790f534 |
8 | ″ | ″ | Na01dfc78ab4c44c4ae773834ee0d1bbb |
9 | ″ | ″ | Na3467dfe01e24240a83718ccf70ea3d9 |
10 | ″ | ″ | Na8e93086f10b424f8bbca0ad4f2ea844 |
11 | ″ | ″ | Nab4ec2ca6a9544d08a1b32dfdc665e7a |
12 | ″ | ″ | anzsrc-for:11 |
13 | ″ | ″ | anzsrc-for:1109 |
14 | ″ | schema:author | Nc76a4d43d657493c99b3e5d22b3d72c1 |
15 | ″ | schema:citation | sg:pub.10.1007/s10162-003-3057-7 |
16 | ″ | ″ | sg:pub.10.1007/s10162-004-4026-5 |
17 | ″ | ″ | sg:pub.10.1038/nn.4091 |
18 | ″ | ″ | sg:pub.10.1038/s41467-018-04146-3 |
19 | ″ | ″ | sg:pub.10.1038/s41467-019-09980-7 |
20 | ″ | ″ | sg:pub.10.1038/s41467-019-11687-8 |
21 | ″ | ″ | sg:pub.10.1038/s41598-018-21233-z |
22 | ″ | ″ | sg:pub.10.1038/srep45524 |
23 | ″ | schema:datePublished | 2021-05-27 |
24 | ″ | schema:datePublishedReg | 2021-05-27 |
25 | ″ | schema:description | Optical stimulation is a paradigm-shifting approach to modulating neural activity that has the potential to overcome the issue of current spread that occurs with electrical stimulation by providing focused stimuli. But optical stimulation either requires high power infrared light or genetic modification of neurons to make them responsive to lower power visible light. This work examines optical activation of auditory neurons following optogenetic modification via AAV injection in two species (mouse and guinea pig). An Anc80 viral vector was used to express the channelrhodopsin variant ChR2-H134R fused to a fluorescent reporter gene under the control of the human synapsin-1 promoter. The AAV was administered directly to the cochlea (n = 33) or posterior semi-circular canal of C57BL/6 mice (n = 4) or to guinea pig cochleae (n = 6). Light (488 nm), electrical stimuli or the combination of these (hybrid stimulation) was delivered to the cochlea via a laser-coupled optical fibre and co-located platinum wire. Activation thresholds, spread of activation and stimulus interactions were obtained from multi-unit recordings from the central nucleus of the inferior colliculus of injected mice, as well as ChR2-H134R transgenic mice (n = 4). Expression of ChR2-H134R was examined by histology. In the mouse, transduction of auditory neurons by the Anc80 viral vector was most successful when injected at a neonatal age with up to 89% of neurons transduced. Auditory neuron transductions were not successful in guinea pigs. Inferior colliculus responses to optical stimuli were detected in a cochleotopic manner in all mice with ChR2-H134R expression. There was a significant correlation between lower activation thresholds in mice and higher proportions of transduced neurons. There was no difference in spread of activation between optical stimulation and electrical stimulation provided by the light/electrical delivery system used here (optical fibre with bonded 25 µm platinum/iridium wire). Hybrid stimulation, comprised of sub-threshold optical stimulation to ‘prime’ or raise the excitability of the neurons, lowered the threshold for electrical activation in most cases, but the impact on excitation width was more variable compared to transgenic mice. This study demonstrates the impact of opsin expression levels and expression pattern on optical and hybrid stimulation when considering optical or hybrid stimulation techniques for neuromodulation. |
26 | ″ | schema:genre | article |
27 | ″ | schema:inLanguage | en |
28 | ″ | schema:isAccessibleForFree | true |
29 | ″ | schema:isPartOf | N8521332279ff4dadb8aae82fb8d8ce67 |
30 | ″ | ″ | Nb3241a1fe21846d78eb2fb0e6bd51e5c |
31 | ″ | ″ | sg:journal.1045337 |
32 | ″ | schema:keywords | AAV |
33 | ″ | ″ | AAV injection |
34 | ″ | ″ | C57BL/6 mice |
35 | ″ | ″ | Inferior Colliculus Responses |
36 | ″ | ″ | activation |
37 | ″ | ″ | activity |
38 | ″ | ″ | age |
39 | ″ | ″ | approach |
40 | ″ | ″ | auditory neurons |
41 | ″ | ″ | canal |
42 | ″ | ″ | cases |
43 | ″ | ″ | central nucleus |
44 | ″ | ″ | cochlea |
45 | ″ | ″ | colliculus |
46 | ″ | ″ | combination |
47 | ″ | ″ | control |
48 | ″ | ″ | correlation |
49 | ″ | ″ | current spread |
50 | ″ | ″ | delivery system |
51 | ″ | ″ | differences |
52 | ″ | ″ | electrical activation |
53 | ″ | ″ | electrical stimulation |
54 | ″ | ″ | electrical stimuli |
55 | ″ | ″ | excitability |
56 | ″ | ″ | excitation width |
57 | ″ | ″ | expression |
58 | ″ | ″ | expression levels |
59 | ″ | ″ | expression patterns |
60 | ″ | ″ | fibers |
61 | ″ | ″ | fluorescent reporter gene |
62 | ″ | ″ | genes |
63 | ″ | ″ | genetic modification |
64 | ″ | ″ | guinea pigs |
65 | ″ | ″ | high power |
66 | ″ | ″ | higher proportion |
67 | ″ | ″ | histology |
68 | ″ | ″ | human synapsin-1 promoter |
69 | ″ | ″ | hybrid activation |
70 | ″ | ″ | hybrid stimulation |
71 | ″ | ″ | impact |
72 | ″ | ″ | inferior colliculus |
73 | ″ | ″ | injection |
74 | ″ | ″ | interaction |
75 | ″ | ″ | issues |
76 | ″ | ″ | levels |
77 | ″ | ″ | light |
78 | ″ | ″ | low-power visible light |
79 | ″ | ″ | lower activation |
80 | ″ | ″ | manner |
81 | ″ | ″ | mice |
82 | ″ | ″ | modification |
83 | ″ | ″ | most cases |
84 | ″ | ″ | multi-unit recordings |
85 | ″ | ″ | neonatal age |
86 | ″ | ″ | neural activity |
87 | ″ | ″ | neuromodulation |
88 | ″ | ″ | neurons |
89 | ″ | ″ | nucleus |
90 | ″ | ″ | opsin |
91 | ″ | ″ | opsin expression levels |
92 | ″ | ″ | optical activation |
93 | ″ | ″ | optical fiber |
94 | ″ | ″ | optical stimulation |
95 | ″ | ″ | optical stimuli |
96 | ″ | ″ | optogenetic modification |
97 | ″ | ″ | paradigm-shifting approach |
98 | ″ | ″ | patterns |
99 | ″ | ″ | pig cochlea |
100 | ″ | ″ | pigs |
101 | ″ | ″ | platinum wire |
102 | ″ | ″ | posterior semi-circular canal |
103 | ″ | ″ | potential |
104 | ″ | ″ | power |
105 | ″ | ″ | primes |
106 | ″ | ″ | promoter |
107 | ″ | ″ | proportion |
108 | ″ | ″ | recordings |
109 | ″ | ″ | reporter gene |
110 | ″ | ″ | response |
111 | ″ | ″ | semi-circular canals |
112 | ″ | ″ | significant correlation |
113 | ″ | ″ | species |
114 | ″ | ″ | spread |
115 | ″ | ″ | spread of activation |
116 | ″ | ″ | stimulation |
117 | ″ | ″ | stimulation techniques |
118 | ″ | ″ | stimuli |
119 | ″ | ″ | stimulus interaction |
120 | ″ | ″ | study |
121 | ″ | ″ | synapsin-1 promoter |
122 | ″ | ″ | system |
123 | ″ | ″ | technique |
124 | ″ | ″ | threshold |
125 | ″ | ″ | transduction |
126 | ″ | ″ | transgenic mice |
127 | ″ | ″ | vector |
128 | ″ | ″ | viral |
129 | ″ | ″ | viral vectors |
130 | ″ | ″ | visible light |
131 | ″ | ″ | width |
132 | ″ | ″ | wire |
133 | ″ | ″ | work |
134 | ″ | schema:name | Viral-mediated transduction of auditory neurons with opsins for optical and hybrid activation |
135 | ″ | schema:pagination | 11229 |
136 | ″ | schema:productId | N688422992e82450ebeb6a17426df4262 |
137 | ″ | ″ | Nc12372654c48410bb2ed7c09b9ee1f23 |
138 | ″ | ″ | Nf37e33c3c12346a194360b97a3b8dc80 |
139 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1138393938 |
140 | ″ | ″ | https://doi.org/10.1038/s41598-021-90764-9 |
141 | ″ | schema:sdDatePublished | 2022-05-10T10:33 |
142 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
143 | ″ | schema:sdPublisher | N8bf3a03052f24ba59455482fba7f34c8 |
144 | ″ | schema:url | https://doi.org/10.1038/s41598-021-90764-9 |
145 | ″ | sgo:license | sg:explorer/license/ |
146 | ″ | sgo:sdDataset | articles |
147 | ″ | rdf:type | schema:ScholarlyArticle |
148 | N0b0a59f1fdce41d6b7d87311ff1fffbb | rdf:first | sg:person.012525562023.14 |
149 | ″ | rdf:rest | Nc5eeec05fa68423a92ad97d5c6cdaded |
150 | N29c634230e36459285794aa17576d57b | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
151 | ″ | schema:name | Acoustic Stimulation |
152 | ″ | rdf:type | schema:DefinedTerm |
153 | N2e6337f50a4346b1aeb7fba06592970c | rdf:first | sg:person.0766001705.30 |
154 | ″ | rdf:rest | rdf:nil |
155 | N392d18074e4040bd894092cca1217dee | rdf:first | sg:person.01000515702.17 |
156 | ″ | rdf:rest | N2e6337f50a4346b1aeb7fba06592970c |
157 | N4834d12ea52b4220aaede0e112b10b5b | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
158 | ″ | schema:name | Genetic Vectors |
159 | ″ | rdf:type | schema:DefinedTerm |
160 | N4befc27e9ff14604b9bbef25aeb336f6 | schema:affiliation | grid-institutes:grid.1008.9 |
161 | ″ | schema:familyName | Ajay |
162 | ″ | schema:givenName | Elise A. |
163 | ″ | rdf:type | schema:Person |
164 | N4ef3046fa05f42848e98526f7fd6c98e | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
165 | ″ | schema:name | Mice |
166 | ″ | rdf:type | schema:DefinedTerm |
167 | N688422992e82450ebeb6a17426df4262 | schema:name | doi |
168 | ″ | schema:value | 10.1038/s41598-021-90764-9 |
169 | ″ | rdf:type | schema:PropertyValue |
170 | N6cb84506000143a0a285c883abecb367 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
171 | ″ | schema:name | Channelrhodopsins |
172 | ″ | rdf:type | schema:DefinedTerm |
173 | N8521332279ff4dadb8aae82fb8d8ce67 | schema:volumeNumber | 11 |
174 | ″ | rdf:type | schema:PublicationVolume |
175 | N867535d199b34b03a3380dbea724d867 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
176 | ″ | schema:name | Optogenetics |
177 | ″ | rdf:type | schema:DefinedTerm |
178 | N8bf3a03052f24ba59455482fba7f34c8 | schema:name | Springer Nature - SN SciGraph project |
179 | ″ | rdf:type | schema:Organization |
180 | N906261c1cc2b4554aa38b4cc781d2f01 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
181 | ″ | schema:name | Guinea Pigs |
182 | ″ | rdf:type | schema:DefinedTerm |
183 | N9edcc6fa9182494a82cddb687790f534 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
184 | ″ | schema:name | Cochlea |
185 | ″ | rdf:type | schema:DefinedTerm |
186 | Na01dfc78ab4c44c4ae773834ee0d1bbb | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
187 | ″ | schema:name | Neurons |
188 | ″ | rdf:type | schema:DefinedTerm |
189 | Na3467dfe01e24240a83718ccf70ea3d9 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
190 | ″ | schema:name | Opsins |
191 | ″ | rdf:type | schema:DefinedTerm |
192 | Na8e93086f10b424f8bbca0ad4f2ea844 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
193 | ″ | schema:name | Animals |
194 | ″ | rdf:type | schema:DefinedTerm |
195 | Na926360888f84d3db3220bbee5cb7a27 | rdf:first | sg:person.0646256021.38 |
196 | ″ | rdf:rest | Nf345aed3f2174d05a17e94b8eefae63f |
197 | Nab4ec2ca6a9544d08a1b32dfdc665e7a | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
198 | ″ | schema:name | Electric Stimulation |
199 | ″ | rdf:type | schema:DefinedTerm |
200 | Nb3241a1fe21846d78eb2fb0e6bd51e5c | schema:issueNumber | 1 |
201 | ″ | rdf:type | schema:PublicationIssue |
202 | Nb439e68065064643a364d6d0724349e4 | rdf:first | N4befc27e9ff14604b9bbef25aeb336f6 |
203 | ″ | rdf:rest | Na926360888f84d3db3220bbee5cb7a27 |
204 | Nc12372654c48410bb2ed7c09b9ee1f23 | schema:name | dimensions_id |
205 | ″ | schema:value | pub.1138393938 |
206 | ″ | rdf:type | schema:PropertyValue |
207 | Nc5eeec05fa68423a92ad97d5c6cdaded | rdf:first | sg:person.01036337620.95 |
208 | ″ | rdf:rest | Nb439e68065064643a364d6d0724349e4 |
209 | Nc76a4d43d657493c99b3e5d22b3d72c1 | rdf:first | sg:person.012706275437.15 |
210 | ″ | rdf:rest | N0b0a59f1fdce41d6b7d87311ff1fffbb |
211 | Nf345aed3f2174d05a17e94b8eefae63f | rdf:first | sg:person.01071147231.23 |
212 | ″ | rdf:rest | N392d18074e4040bd894092cca1217dee |
213 | Nf37e33c3c12346a194360b97a3b8dc80 | schema:name | pubmed_id |
214 | ″ | schema:value | 34045604 |
215 | ″ | rdf:type | schema:PropertyValue |
216 | anzsrc-for:11 | schema:inDefinedTermSet | anzsrc-for: |
217 | ″ | schema:name | Medical and Health Sciences |
218 | ″ | rdf:type | schema:DefinedTerm |
219 | anzsrc-for:1109 | schema:inDefinedTermSet | anzsrc-for: |
220 | ″ | schema:name | Neurosciences |
221 | ″ | rdf:type | schema:DefinedTerm |
222 | sg:journal.1045337 | schema:issn | 2045-2322 |
223 | ″ | schema:name | Scientific Reports |
224 | ″ | schema:publisher | Springer Nature |
225 | ″ | rdf:type | schema:Periodical |
226 | sg:person.01000515702.17 | schema:affiliation | grid-institutes:grid.1027.4 |
227 | ″ | schema:familyName | Stoddart |
228 | ″ | schema:givenName | Paul R. |
229 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000515702.17 |
230 | ″ | rdf:type | schema:Person |
231 | sg:person.01036337620.95 | schema:affiliation | grid-institutes:grid.1008.9 |
232 | ″ | schema:familyName | Wise |
233 | ″ | schema:givenName | Andrew K. |
234 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036337620.95 |
235 | ″ | rdf:type | schema:Person |
236 | sg:person.01071147231.23 | schema:affiliation | grid-institutes:grid.410670.4 |
237 | ″ | schema:familyName | O’Leary |
238 | ″ | schema:givenName | Stephen J. |
239 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071147231.23 |
240 | ″ | rdf:type | schema:Person |
241 | sg:person.012525562023.14 | schema:affiliation | grid-institutes:grid.431365.6 |
242 | ″ | schema:familyName | Thompson |
243 | ″ | schema:givenName | Alex C. |
244 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012525562023.14 |
245 | ″ | rdf:type | schema:Person |
246 | sg:person.012706275437.15 | schema:affiliation | grid-institutes:grid.1008.9 |
247 | ″ | schema:familyName | Richardson |
248 | ″ | schema:givenName | Rachael T. |
249 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012706275437.15 |
250 | ″ | rdf:type | schema:Person |
251 | sg:person.0646256021.38 | schema:affiliation | grid-institutes:grid.431365.6 |
252 | ″ | schema:familyName | Gunewardene |
253 | ″ | schema:givenName | Niliksha |
254 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646256021.38 |
255 | ″ | rdf:type | schema:Person |
256 | sg:person.0766001705.30 | schema:affiliation | grid-institutes:grid.1008.9 |
257 | ″ | schema:familyName | Fallon |
258 | ″ | schema:givenName | James B. |
259 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766001705.30 |
260 | ″ | rdf:type | schema:Person |
261 | sg:pub.10.1007/s10162-003-3057-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1050496042 |
262 | ″ | ″ | https://doi.org/10.1007/s10162-003-3057-7 |
263 | ″ | rdf:type | schema:CreativeWork |
264 | sg:pub.10.1007/s10162-004-4026-5 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1044719799 |
265 | ″ | ″ | https://doi.org/10.1007/s10162-004-4026-5 |
266 | ″ | rdf:type | schema:CreativeWork |
267 | sg:pub.10.1038/nn.4091 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1049870880 |
268 | ″ | ″ | https://doi.org/10.1038/nn.4091 |
269 | ″ | rdf:type | schema:CreativeWork |
270 | sg:pub.10.1038/s41467-018-04146-3 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1103640980 |
271 | ″ | ″ | https://doi.org/10.1038/s41467-018-04146-3 |
272 | ″ | rdf:type | schema:CreativeWork |
273 | sg:pub.10.1038/s41467-019-09980-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1113811298 |
274 | ″ | ″ | https://doi.org/10.1038/s41467-019-09980-7 |
275 | ″ | rdf:type | schema:CreativeWork |
276 | sg:pub.10.1038/s41467-019-11687-8 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1120395625 |
277 | ″ | ″ | https://doi.org/10.1038/s41467-019-11687-8 |
278 | ″ | rdf:type | schema:CreativeWork |
279 | sg:pub.10.1038/s41598-018-21233-z | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1100925237 |
280 | ″ | ″ | https://doi.org/10.1038/s41598-018-21233-z |
281 | ″ | rdf:type | schema:CreativeWork |
282 | sg:pub.10.1038/srep45524 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1084508627 |
283 | ″ | ″ | https://doi.org/10.1038/srep45524 |
284 | ″ | rdf:type | schema:CreativeWork |
285 | grid-institutes:grid.1008.9 | schema:alternateName | Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, Australia |
286 | ″ | ″ | Medical Bionics Department, University of Melbourne, Parkville, VIC, Australia |
287 | ″ | schema:name | Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, Australia |
288 | ″ | ″ | Department of Surgery (Otolaryngology), University of Melbourne, The Royal Victorian Eye and Ear Hospital, 3002, East Melbourne, VIC, Australia |
289 | ″ | ″ | Medical Bionics Department, University of Melbourne, Parkville, VIC, Australia |
290 | ″ | ″ | The Bionics Institute, 3002, East Melbourne, VIC, Australia |
291 | ″ | rdf:type | schema:Organization |
292 | grid-institutes:grid.1027.4 | schema:alternateName | Faculty of Science, Engineering and Technology, Swinburne University of Technology, 3122, Hawthorn, VIC, Australia |
293 | ″ | schema:name | Faculty of Science, Engineering and Technology, Swinburne University of Technology, 3122, Hawthorn, VIC, Australia |
294 | ″ | rdf:type | schema:Organization |
295 | grid-institutes:grid.410670.4 | schema:alternateName | Department of Surgery (Otolaryngology), University of Melbourne, The Royal Victorian Eye and Ear Hospital, 3002, East Melbourne, VIC, Australia |
296 | ″ | schema:name | Department of Surgery (Otolaryngology), University of Melbourne, The Royal Victorian Eye and Ear Hospital, 3002, East Melbourne, VIC, Australia |
297 | ″ | rdf:type | schema:Organization |
298 | grid-institutes:grid.431365.6 | schema:alternateName | The Bionics Institute, 3002, East Melbourne, VIC, Australia |
299 | ″ | schema:name | The Bionics Institute, 3002, East Melbourne, VIC, Australia |
300 | ″ | rdf:type | schema:Organization |