Detecting network anomalies using Forman–Ricci curvature and a case study for human brain networks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-04-14

AUTHORS

Tanima Chatterjee, Réka Albert, Stuti Thapliyal, Nazanin Azarhooshang, Bhaskar DasGupta

ABSTRACT

We analyze networks of functional correlations between brain regions to identify changes in their structure caused by Attention Deficit Hyperactivity Disorder (adhd). We express the task for finding changes as a network anomaly detection problem on temporal networks. We propose the use of a curvature measure based on the Forman–Ricci curvature, which expresses higher-order correlations among two connected nodes. Our theoretical result on comparing this Forman–Ricci curvature with another well-known notion of network curvature, namely the Ollivier–Ricci curvature, lends further justification to the assertions that these two notions of network curvatures are not well correlated and therefore one of these curvature measures cannot be used as an universal substitute for the other measure. Our experimental results indicate nine critical edges whose curvature differs dramatically in brains of adhd patients compared to healthy brains. The importance of these edges is supported by existing neuroscience evidence. We demonstrate that comparative analysis of curvature identifies changes that more traditional approaches, for example analysis of edge weights, would not be able to identify. More... »

PAGES

8121

References to SciGraph publications

  • 2020-01-22. Why Did the Shape of Your Network Change? (On Detecting Network Anomalies via Non-local Curvatures) in ALGORITHMICA
  • 2011-10-11. Bayesian on-line spectral change point detection: a soft computing approach for on-line ASR in INTERNATIONAL JOURNAL OF SPEECH TECHNOLOGY
  • 2017-02-17. Effect of Gromov-Hyperbolicity Parameter on Cuts and Expansions in Graphs and Some Algorithmic Implications in ALGORITHMICA
  • 2015-09-21. Modern temporal network theory: a colloquium in THE EUROPEAN PHYSICAL JOURNAL B
  • 1998-12. Expanders are not hyperbolic in ISRAEL JOURNAL OF MATHEMATICS
  • 1999. Metric Spaces of Non-Positive Curvature in NONE
  • 2020-07-02. Measuring robustness of brain networks in autism spectrum disorder with Ricci curvature in SCIENTIFIC REPORTS
  • 2013-12-17. Global and local brain network reorganization in attention-deficit/hyperactivity disorder in BRAIN IMAGING AND BEHAVIOR
  • 2016-09-08. A survey of methods for time series change point detection in KNOWLEDGE AND INFORMATION SYSTEMS
  • 2003. A Panoramic View of Riemannian Geometry in NONE
  • 2019-10-30. Network curvature as a hallmark of brain structural connectivity in NATURE COMMUNICATIONS
  • 2002-04-22. Network motifs in the transcriptional regulation network of Escherichia coli in NATURE GENETICS
  • 2003-02. Bochner's Method for Cell Complexes and Combinatorial Ricci Curvature in DISCRETE & COMPUTATIONAL GEOMETRY
  • 1987. Hyperbolic Groups in ESSAYS IN GROUP THEORY
  • 2018-06-05. Comparative analysis of two discretizations of Ricci curvature for complex networks in SCIENTIFIC REPORTS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-021-87587-z

    DOI

    http://dx.doi.org/10.1038/s41598-021-87587-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1137194871

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/33854129


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology and Cognitive Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Attention Deficit Disorder with Hyperactivity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Brain", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "User-Computer Interface", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Computer Science, University of Illinois at Chicago, 60607, Chicago, USA", 
              "id": "http://www.grid.ac/institutes/grid.185648.6", 
              "name": [
                "Department of Computer Science, University of Illinois at Chicago, 60607, Chicago, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chatterjee", 
            "givenName": "Tanima", 
            "id": "sg:person.07403364123.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07403364123.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, Pennsylvania State University, 16802, University Park, USA", 
              "id": "http://www.grid.ac/institutes/grid.29857.31", 
              "name": [
                "Department of Physics, Pennsylvania State University, 16802, University Park, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Albert", 
            "givenName": "R\u00e9ka", 
            "id": "sg:person.01017036620.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017036620.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science, University of Illinois at Chicago, 60607, Chicago, USA", 
              "id": "http://www.grid.ac/institutes/grid.185648.6", 
              "name": [
                "Department of Computer Science, University of Illinois at Chicago, 60607, Chicago, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thapliyal", 
            "givenName": "Stuti", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science, University of Illinois at Chicago, 60607, Chicago, USA", 
              "id": "http://www.grid.ac/institutes/grid.185648.6", 
              "name": [
                "Department of Computer Science, University of Illinois at Chicago, 60607, Chicago, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Azarhooshang", 
            "givenName": "Nazanin", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science, University of Illinois at Chicago, 60607, Chicago, USA", 
              "id": "http://www.grid.ac/institutes/grid.185648.6", 
              "name": [
                "Department of Computer Science, University of Illinois at Chicago, 60607, Chicago, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "DasGupta", 
            "givenName": "Bhaskar", 
            "id": "sg:person.0763403270.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763403270.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10772-011-9116-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027135347", 
              "https://doi.org/10.1007/s10772-011-9116-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjb/e2015-60657-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034804585", 
              "https://doi.org/10.1140/epjb/e2015-60657-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-12494-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018384993", 
              "https://doi.org/10.1007/978-3-662-12494-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-27001-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104316461", 
              "https://doi.org/10.1038/s41598-018-27001-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00454-002-0743-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010231584", 
              "https://doi.org/10.1007/s00454-002-0743-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-12915-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122197675", 
              "https://doi.org/10.1038/s41467-019-12915-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-020-67474-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1128918294", 
              "https://doi.org/10.1038/s41598-020-67474-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02783040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034381686", 
              "https://doi.org/10.1007/bf02783040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng881", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010954918", 
              "https://doi.org/10.1038/ng881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4613-9586-7_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038753055", 
              "https://doi.org/10.1007/978-1-4613-9586-7_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11682-013-9279-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012634590", 
              "https://doi.org/10.1007/s11682-013-9279-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10115-016-0987-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053043091", 
              "https://doi.org/10.1007/s10115-016-0987-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-18245-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024721376", 
              "https://doi.org/10.1007/978-3-642-18245-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00453-019-00665-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124231456", 
              "https://doi.org/10.1007/s00453-019-00665-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00453-017-0291-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083911729", 
              "https://doi.org/10.1007/s00453-017-0291-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-04-14", 
        "datePublishedReg": "2021-04-14", 
        "description": "We analyze networks of functional correlations between brain regions to identify changes in their structure caused by Attention Deficit Hyperactivity Disorder (adhd). We express the task for finding changes as a network anomaly detection problem on temporal networks. We propose the use of a curvature measure based on the Forman\u2013Ricci curvature, which expresses higher-order correlations among two connected nodes. Our theoretical result on comparing this Forman\u2013Ricci curvature with another well-known notion of network curvature, namely the Ollivier\u2013Ricci curvature, lends further justification to the assertions that these two notions of network curvatures are not well correlated and therefore one of these curvature measures cannot be used as an universal substitute for the other measure. Our experimental results indicate nine critical edges whose curvature differs dramatically in brains of adhd patients compared to healthy brains. The importance of these edges is supported by existing neuroscience evidence. We demonstrate that comparative analysis of curvature identifies changes that more traditional approaches, for example analysis of edge weights, would not be able to identify.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-021-87587-z", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7704338", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7704299", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "keywords": [
          "attention deficit hyperactivity disorder", 
          "deficit hyperactivity disorder", 
          "Forman-Ricci curvature", 
          "ADHD patients", 
          "healthy brain", 
          "brain regions", 
          "hyperactivity disorder", 
          "brain networks", 
          "human brain networks", 
          "brain", 
          "functional correlation", 
          "neuroscience evidence", 
          "network anomaly detection problem", 
          "patients", 
          "disorders", 
          "measures", 
          "universal substitute", 
          "network curvature", 
          "correlation", 
          "temporal networks", 
          "changes", 
          "further justification", 
          "evidence", 
          "Ollivier-Ricci curvature", 
          "weight", 
          "anomaly detection problem", 
          "task", 
          "study", 
          "analysis", 
          "network anomalies", 
          "results", 
          "use", 
          "anomalies", 
          "detection problem", 
          "notion", 
          "connected nodes", 
          "edge weights", 
          "substitute", 
          "traditional approaches", 
          "network", 
          "nodes", 
          "importance", 
          "higher-order correlations", 
          "experimental results", 
          "assertion", 
          "identifies", 
          "comparative analysis", 
          "example analysis", 
          "region", 
          "case study", 
          "justification", 
          "critical edge", 
          "approach", 
          "curvature", 
          "problem", 
          "curvature measures", 
          "edge", 
          "theoretical results", 
          "structure"
        ], 
        "name": "Detecting network anomalies using Forman\u2013Ricci curvature and a case study for human brain networks", 
        "pagination": "8121", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1137194871"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-021-87587-z"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "33854129"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-021-87587-z", 
          "https://app.dimensions.ai/details/publication/pub.1137194871"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:42", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_895.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-021-87587-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-87587-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-87587-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-87587-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-87587-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    232 TRIPLES      21 PREDICATES      104 URIs      81 LITERALS      12 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-021-87587-z schema:about N07ddfcf4c54b4679935767d1ecf0f881
    2 N2516c319963b45488c3b239d550334d3
    3 N2dbb1aed319a490ea98f0f7727940bcb
    4 Ncbabc1b826b2440b841cdb8b1faa7abb
    5 Nec7749c137374eaa946bd8f6eea94af6
    6 anzsrc-for:17
    7 anzsrc-for:1701
    8 schema:author N57fd674656784f81ace93c847136f16f
    9 schema:citation sg:pub.10.1007/978-1-4613-9586-7_3
    10 sg:pub.10.1007/978-3-642-18245-7
    11 sg:pub.10.1007/978-3-662-12494-9
    12 sg:pub.10.1007/bf02783040
    13 sg:pub.10.1007/s00453-017-0291-7
    14 sg:pub.10.1007/s00453-019-00665-7
    15 sg:pub.10.1007/s00454-002-0743-x
    16 sg:pub.10.1007/s10115-016-0987-z
    17 sg:pub.10.1007/s10772-011-9116-2
    18 sg:pub.10.1007/s11682-013-9279-3
    19 sg:pub.10.1038/ng881
    20 sg:pub.10.1038/s41467-019-12915-x
    21 sg:pub.10.1038/s41598-018-27001-3
    22 sg:pub.10.1038/s41598-020-67474-9
    23 sg:pub.10.1140/epjb/e2015-60657-4
    24 schema:datePublished 2021-04-14
    25 schema:datePublishedReg 2021-04-14
    26 schema:description We analyze networks of functional correlations between brain regions to identify changes in their structure caused by Attention Deficit Hyperactivity Disorder (adhd). We express the task for finding changes as a network anomaly detection problem on temporal networks. We propose the use of a curvature measure based on the Forman–Ricci curvature, which expresses higher-order correlations among two connected nodes. Our theoretical result on comparing this Forman–Ricci curvature with another well-known notion of network curvature, namely the Ollivier–Ricci curvature, lends further justification to the assertions that these two notions of network curvatures are not well correlated and therefore one of these curvature measures cannot be used as an universal substitute for the other measure. Our experimental results indicate nine critical edges whose curvature differs dramatically in brains of adhd patients compared to healthy brains. The importance of these edges is supported by existing neuroscience evidence. We demonstrate that comparative analysis of curvature identifies changes that more traditional approaches, for example analysis of edge weights, would not be able to identify.
    27 schema:genre article
    28 schema:isAccessibleForFree true
    29 schema:isPartOf N75f6fc82cbf142888a1328b32dd46903
    30 Ncd3d3c16e24b42eba22a3fc4090962f1
    31 sg:journal.1045337
    32 schema:keywords ADHD patients
    33 Forman-Ricci curvature
    34 Ollivier-Ricci curvature
    35 analysis
    36 anomalies
    37 anomaly detection problem
    38 approach
    39 assertion
    40 attention deficit hyperactivity disorder
    41 brain
    42 brain networks
    43 brain regions
    44 case study
    45 changes
    46 comparative analysis
    47 connected nodes
    48 correlation
    49 critical edge
    50 curvature
    51 curvature measures
    52 deficit hyperactivity disorder
    53 detection problem
    54 disorders
    55 edge
    56 edge weights
    57 evidence
    58 example analysis
    59 experimental results
    60 functional correlation
    61 further justification
    62 healthy brain
    63 higher-order correlations
    64 human brain networks
    65 hyperactivity disorder
    66 identifies
    67 importance
    68 justification
    69 measures
    70 network
    71 network anomalies
    72 network anomaly detection problem
    73 network curvature
    74 neuroscience evidence
    75 nodes
    76 notion
    77 patients
    78 problem
    79 region
    80 results
    81 structure
    82 study
    83 substitute
    84 task
    85 temporal networks
    86 theoretical results
    87 traditional approaches
    88 universal substitute
    89 use
    90 weight
    91 schema:name Detecting network anomalies using Forman–Ricci curvature and a case study for human brain networks
    92 schema:pagination 8121
    93 schema:productId N61b3664fc5214cab8a587a132915f6d8
    94 Na085c3dd15244660bccc08a9f33a261e
    95 Ned2876684fc94b2d844c348b906efcf0
    96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137194871
    97 https://doi.org/10.1038/s41598-021-87587-z
    98 schema:sdDatePublished 2022-12-01T06:42
    99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    100 schema:sdPublisher Ne0ed99a5ef004e06936fc80467ef12d8
    101 schema:url https://doi.org/10.1038/s41598-021-87587-z
    102 sgo:license sg:explorer/license/
    103 sgo:sdDataset articles
    104 rdf:type schema:ScholarlyArticle
    105 N07ddfcf4c54b4679935767d1ecf0f881 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Attention Deficit Disorder with Hyperactivity
    107 rdf:type schema:DefinedTerm
    108 N2516c319963b45488c3b239d550334d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name User-Computer Interface
    110 rdf:type schema:DefinedTerm
    111 N2dbb1aed319a490ea98f0f7727940bcb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Brain
    113 rdf:type schema:DefinedTerm
    114 N2ea44fe4aeca41bb82468b990c3ac811 rdf:first sg:person.0763403270.10
    115 rdf:rest rdf:nil
    116 N57fd674656784f81ace93c847136f16f rdf:first sg:person.07403364123.71
    117 rdf:rest Ne9df40f4436c4de988f24ad9a9733d9c
    118 N5ebeed811bc8446d91c8c9b2b7b867e3 schema:affiliation grid-institutes:grid.185648.6
    119 schema:familyName Thapliyal
    120 schema:givenName Stuti
    121 rdf:type schema:Person
    122 N61b3664fc5214cab8a587a132915f6d8 schema:name pubmed_id
    123 schema:value 33854129
    124 rdf:type schema:PropertyValue
    125 N67d3258315ca44869d8b4c8e8d3fc08b rdf:first N5ebeed811bc8446d91c8c9b2b7b867e3
    126 rdf:rest Nd9cf0bfaaee1464d965c71292792749b
    127 N75f6fc82cbf142888a1328b32dd46903 schema:issueNumber 1
    128 rdf:type schema:PublicationIssue
    129 Na085c3dd15244660bccc08a9f33a261e schema:name dimensions_id
    130 schema:value pub.1137194871
    131 rdf:type schema:PropertyValue
    132 Na8c87850fc4646ab93b71e5fe3746d5e schema:affiliation grid-institutes:grid.185648.6
    133 schema:familyName Azarhooshang
    134 schema:givenName Nazanin
    135 rdf:type schema:Person
    136 Ncbabc1b826b2440b841cdb8b1faa7abb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Algorithms
    138 rdf:type schema:DefinedTerm
    139 Ncd3d3c16e24b42eba22a3fc4090962f1 schema:volumeNumber 11
    140 rdf:type schema:PublicationVolume
    141 Nd9cf0bfaaee1464d965c71292792749b rdf:first Na8c87850fc4646ab93b71e5fe3746d5e
    142 rdf:rest N2ea44fe4aeca41bb82468b990c3ac811
    143 Ne0ed99a5ef004e06936fc80467ef12d8 schema:name Springer Nature - SN SciGraph project
    144 rdf:type schema:Organization
    145 Ne9df40f4436c4de988f24ad9a9733d9c rdf:first sg:person.01017036620.03
    146 rdf:rest N67d3258315ca44869d8b4c8e8d3fc08b
    147 Nec7749c137374eaa946bd8f6eea94af6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Humans
    149 rdf:type schema:DefinedTerm
    150 Ned2876684fc94b2d844c348b906efcf0 schema:name doi
    151 schema:value 10.1038/s41598-021-87587-z
    152 rdf:type schema:PropertyValue
    153 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
    154 schema:name Psychology and Cognitive Sciences
    155 rdf:type schema:DefinedTerm
    156 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
    157 schema:name Psychology
    158 rdf:type schema:DefinedTerm
    159 sg:grant.7704299 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-021-87587-z
    160 rdf:type schema:MonetaryGrant
    161 sg:grant.7704338 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-021-87587-z
    162 rdf:type schema:MonetaryGrant
    163 sg:journal.1045337 schema:issn 2045-2322
    164 schema:name Scientific Reports
    165 schema:publisher Springer Nature
    166 rdf:type schema:Periodical
    167 sg:person.01017036620.03 schema:affiliation grid-institutes:grid.29857.31
    168 schema:familyName Albert
    169 schema:givenName Réka
    170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017036620.03
    171 rdf:type schema:Person
    172 sg:person.07403364123.71 schema:affiliation grid-institutes:grid.185648.6
    173 schema:familyName Chatterjee
    174 schema:givenName Tanima
    175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07403364123.71
    176 rdf:type schema:Person
    177 sg:person.0763403270.10 schema:affiliation grid-institutes:grid.185648.6
    178 schema:familyName DasGupta
    179 schema:givenName Bhaskar
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763403270.10
    181 rdf:type schema:Person
    182 sg:pub.10.1007/978-1-4613-9586-7_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038753055
    183 https://doi.org/10.1007/978-1-4613-9586-7_3
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/978-3-642-18245-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024721376
    186 https://doi.org/10.1007/978-3-642-18245-7
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/978-3-662-12494-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018384993
    189 https://doi.org/10.1007/978-3-662-12494-9
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/bf02783040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034381686
    192 https://doi.org/10.1007/bf02783040
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/s00453-017-0291-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083911729
    195 https://doi.org/10.1007/s00453-017-0291-7
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s00453-019-00665-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124231456
    198 https://doi.org/10.1007/s00453-019-00665-7
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s00454-002-0743-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010231584
    201 https://doi.org/10.1007/s00454-002-0743-x
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/s10115-016-0987-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1053043091
    204 https://doi.org/10.1007/s10115-016-0987-z
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/s10772-011-9116-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027135347
    207 https://doi.org/10.1007/s10772-011-9116-2
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/s11682-013-9279-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012634590
    210 https://doi.org/10.1007/s11682-013-9279-3
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/ng881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010954918
    213 https://doi.org/10.1038/ng881
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/s41467-019-12915-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1122197675
    216 https://doi.org/10.1038/s41467-019-12915-x
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/s41598-018-27001-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104316461
    219 https://doi.org/10.1038/s41598-018-27001-3
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/s41598-020-67474-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128918294
    222 https://doi.org/10.1038/s41598-020-67474-9
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1140/epjb/e2015-60657-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034804585
    225 https://doi.org/10.1140/epjb/e2015-60657-4
    226 rdf:type schema:CreativeWork
    227 grid-institutes:grid.185648.6 schema:alternateName Department of Computer Science, University of Illinois at Chicago, 60607, Chicago, USA
    228 schema:name Department of Computer Science, University of Illinois at Chicago, 60607, Chicago, USA
    229 rdf:type schema:Organization
    230 grid-institutes:grid.29857.31 schema:alternateName Department of Physics, Pennsylvania State University, 16802, University Park, USA
    231 schema:name Department of Physics, Pennsylvania State University, 16802, University Park, USA
    232 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...