Meta-QTL and ortho-MQTL analyses identified genomic regions controlling rice yield, yield-related traits and root architecture under water deficit conditions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-03-25

AUTHORS

Bahman Khahani, Elahe Tavakol, Vahid Shariati, Laura Rossini

ABSTRACT

Meta-QTL (MQTL) analysis is a robust approach for genetic dissection of complex quantitative traits. Rice varieties adapted to non-flooded cultivation are highly desirable in breeding programs due to the water deficit global problem. In order to identify stable QTLs for major agronomic traits under water deficit conditions, we performed a comprehensive MQTL analysis on 563 QTLs from 67 rice populations published from 2001 to 2019. Yield and yield-related traits including grain weight, heading date, plant height, tiller number as well as root architecture-related traits including root dry weight, root length, root number, root thickness, the ratio of deep rooting and plant water content under water deficit condition were investigated. A total of 61 stable MQTLs over different genetic backgrounds and environments were identified. The average confidence interval of MQTLs was considerably refined compared to the initial QTLs, resulted in the identification of some well-known functionally characterized genes and several putative novel CGs for investigated traits. Ortho-MQTL mining based on genomic collinearity between rice and maize allowed identification of five ortho-MQTLs between these two cereals. The results can help breeders to improve yield under water deficit conditions. More... »

PAGES

6942

References to SciGraph publications

  • 2015-01-16. Characterization of miRNAs associated with Botrytis cinerea infection of tomato leaves in BMC PLANT BIOLOGY
  • 2019-02-11. Paleogenomics: reconstruction of plant evolutionary trajectories from modern and ancient DNA in GENOME BIOLOGY
  • 2013-10-24. A major QTL controlling deep rooting on rice chromosome 4 in SCIENTIFIC REPORTS
  • 2002-10-24. Molecular dissection of the genetic relationships of source, sink and transport tissue with yield traits in rice in THEORETICAL AND APPLIED GENETICS
  • 2017-03-20. The small auxin-up RNA OsSAUR45 affects auxin synthesis and transport in rice in PLANT MOLECULAR BIOLOGY
  • 2018-05-11. Meta-QTL analysis of seed iron and zinc concentration and content in common bean (Phaseolus vulgaris L.) in THEORETICAL AND APPLIED GENETICS
  • 2008-05-01. Localization of QTL for basal root thickness in japonica rice and effect of marker-assisted selection for a major QTL in EUPHYTICA
  • 2013-05-10. Meta-analyses of QTL for grain yield and anthesis silking interval in 18 maize populations evaluated under water-stressed and well-watered environments in BMC GENOMICS
  • 2015-07-06. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality in NATURE GENETICS
  • 2016-09-30. Genetic control of flowering time in rice: integration of Mendelian genetics and genomics in THEORETICAL AND APPLIED GENETICS
  • 2005-12-01. Grain yield responses to moisture regimes in a rice population: association among traits and genetic markers in THEORETICAL AND APPLIED GENETICS
  • 2018-06-18. Genetic dissection of rice (Oryza sativa L.) tiller, plant height, and grain yield based on QTL mapping and metaanalysis in EUPHYTICA
  • 2020-04-10. Genome wide screening and comparative genome analysis for Meta-QTLs, ortho-MQTLs and candidate genes controlling yield and yield-related traits in rice in BMC GENOMICS
  • 2012-11-04. QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance in THEORETICAL AND APPLIED GENETICS
  • 2017-02-09. Analysis of drought-responsive signalling network in two contrasting rice cultivars using transcriptome-based approach in SCIENTIFIC REPORTS
  • 2006-11-10. Drought tolerance in rice: morphological and molecular genetic consideration in PLANT GROWTH REGULATION
  • 2015-07-24. Mapping Consistent Rice (Oryza sativa L.) Yield QTLs under Drought Stress in Target Rainfed Environments in RICE
  • 2009-12-03. Molecular mapping and location of QTLs for drought-resistance traits in indica rice (Oryza sativa L.) lines adapted to target environments in ACTA PHYSIOLOGIAE PLANTARUM
  • 2018-01-27. Further QTL mapping for yield component traits using introgression lines in rice (Oryza sativa L.) under drought field environments in EUPHYTICA
  • 2005-10-06. Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety in THEORETICAL AND APPLIED GENETICS
  • 2002-02-22. Mapping QTLs for root morphology of a rice population adapted to rainfed lowland conditions in THEORETICAL AND APPLIED GENETICS
  • 2009-06-22. Improved resolution in the position of drought-related QTLs in a single mapping population of rice by meta-analysis in BMC GENOMICS
  • 2014-03-16. Molecular mapping across three populations reveals a QTL hotspot region on chromosome 3 for secondary traits associated with drought tolerance in tropical maize in MOLECULAR BREEDING
  • 2011-06-16. Meta-analysis of grain yield QTL identified during agricultural drought in grasses showed consensus in BMC GENOMICS
  • 2015-10-30. Brassinosteroid (BR) biosynthetic gene lhdd10 controls late heading and plant height in rice (Oryza sativa L.) in PLANT CELL REPORTS
  • 2010-12-14. Meta-analysis of Yield QTLs Derived from Inter-specific Crosses of Rice Reveals Consensus Regions and Candidate Genes in PLANT MOLECULAR BIOLOGY REPORTER
  • 2015-01-07. Three CCT domain-containing genes were identified to regulate heading date by candidate gene-based association mapping and transformation in rice in SCIENTIFIC REPORTS
  • 2015-02-05. A QTL for root growth angle on rice chromosome 7 is involved in the genetic pathway of DEEPER ROOTING 1 in RICE
  • 2007-09-07. Mapping QTLs of root morphological traits at different growth stages in rice in GENETICA
  • 2003-08-15. Mapping QTLs and candidate genes for rice root traits under different water-supply conditions and comparative analysis across three populations in THEORETICAL AND APPLIED GENETICS
  • 2005-03-12. QTL mapping of root traits in a doubled haploid population from a cross between upland and lowland japonica rice in three environments in THEORETICAL AND APPLIED GENETICS
  • 2008-07-19. QTLs linked to leaf epicuticular wax, physio-morphological and plant production traits under drought stress in rice (Oryza sativa L.) in PLANT GROWTH REGULATION
  • 2003-08-13. Molecular marker dissection of rice (Oryza sativa L.) plant architecture under temperate and tropical climates in THEORETICAL AND APPLIED GENETICS
  • 2007-02-08. MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments in BMC BIOINFORMATICS
  • 2001-01. Quantitative trait loci for yield and yield components in an Oryza sativa×Oryza rufipogon BC2F2 population evaluated in an upland environment in THEORETICAL AND APPLIED GENETICS
  • 2015-03-21. QTLs underlying natural variation of root growth angle among rice cultivars with the same functional allele of DEEPER ROOTING 1 in RICE
  • 2017-07-24. Comparative analysis of Histone modifications and DNA methylation at OsBZ8 locus under salinity stress in IR64 and Nonabokra rice varieties in PLANT MOLECULAR BIOLOGY
  • 2018-01-29. Identification of drought responsive QTLs during vegetative growth stage of rice using a saturated GBS-based SNP linkage map in EUPHYTICA
  • 2015-06-13. OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes in BMC PLANT BIOLOGY
  • 2009-08-26. Rice Root Genetic Architecture: Meta-analysis from a Drought QTL Database in RICE
  • 2013-08-04. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions in NATURE GENETICS
  • 2015-02-19. QTL associated with lateral root plasticity in response to soil moisture fluctuation stress in rice in PLANT AND SOIL
  • 2013-10-29. Genetic variation, linkage mapping of QTL and correlation studies for yield, root, and agronomic traits for aerobic adaptation in BMC GENOMIC DATA
  • 2016-10-07. Genetic dissection of heading date and yield under Mediterranean dry climate in barley (Hordeum vulgare L.) in EUPHYTICA
  • 2014-02-03. Multiple major QTL lead to stable yield performance of rice cultivars across varying drought intensities in BMC GENOMIC DATA
  • 2012-04-21. Meta-analysis of QTL associated with tolerance to abiotic stresses in barley in EUPHYTICA
  • 2014-06-29. Meta-analysis of quantitative trait loci for grain yield and component traits under reproductive-stage drought stress in an upland rice population in MOLECULAR BREEDING
  • 2003-12. Locating QTLs controlling constitutive root traits in the rice population IAC 165 × Co39 in EUPHYTICA
  • 2016-07-05. Quantitative trait loci identification and meta-analysis for rice panicle-related traits in MOLECULAR GENETICS AND GENOMICS
  • 2012-10-03. A map of rice genome variation reveals the origin of cultivated rice in NATURE
  • 2017-05-25. 08SG2/OsBAK1 regulates grain size and number, and functions differently in Indica and Japonica backgrounds in rice in RICE
  • 2016-10-11. Meta-analysis of major QTL for abiotic stress tolerance in barley and implications for barley breeding in PLANTA
  • 2020-08-20. Detection of genomic regions associated with tiller number in Iranian bread wheat under different water regimes using genome-wide association study in SCIENTIFIC REPORTS
  • 2019-03-20. Genome-wide meta-analysis on yield and yield-related QTLs in barley (Hordeum vulgare L.) in MOLECULAR BREEDING
  • 1997-03. A Simple Method to Calculate Resolving Power and Confidence Interval of QTL Map Location in BEHAVIOR GENETICS
  • 2016. Ensembl Plants: Integrating Tools for Visualizing, Mining, and Analyzing Plant Genomics Data in PLANT BIOINFORMATICS
  • 2008-12-09. Trait identification and QTL validation for reproductive stage drought resistance in rice using selective genotyping of near flowering RILs in EUPHYTICA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-021-86259-2

    DOI

    http://dx.doi.org/10.1038/s41598-021-86259-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1136654646

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/33767323


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Agricultural and Veterinary Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0703", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Crop and Pasture Production", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biomass", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Droughts", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Plant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oryza", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Osmoregulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plant Roots", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quantitative Trait Loci", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Seeds", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Plant Genetics and Production, College of Agriculture, Shiraz University, Shiraz, Iran", 
              "id": "http://www.grid.ac/institutes/grid.412573.6", 
              "name": [
                "Department of Plant Genetics and Production, College of Agriculture, Shiraz University, Shiraz, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Khahani", 
            "givenName": "Bahman", 
            "id": "sg:person.012177576775.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012177576775.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Plant Genetics and Production, College of Agriculture, Shiraz University, Shiraz, Iran", 
              "id": "http://www.grid.ac/institutes/grid.412573.6", 
              "name": [
                "Department of Plant Genetics and Production, College of Agriculture, Shiraz University, Shiraz, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tavakol", 
            "givenName": "Elahe", 
            "id": "sg:person.01336740171.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336740171.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "NIGEB Genome Center, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.419420.a", 
              "name": [
                "NIGEB Genome Center, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shariati", 
            "givenName": "Vahid", 
            "id": "sg:person.015120701536.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015120701536.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universit\u00e0 degli Studi di Milano-DiSAA, Milan, Italy", 
              "id": "http://www.grid.ac/institutes/grid.4708.b", 
              "name": [
                "Universit\u00e0 degli Studi di Milano-DiSAA, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rossini", 
            "givenName": "Laura", 
            "id": "sg:person.0743416342.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743416342.96"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00122-005-1958-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024622443", 
              "https://doi.org/10.1007/s00122-005-1958-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10725-008-9304-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009799632", 
              "https://doi.org/10.1007/s10725-008-9304-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00299-015-1889-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013565956", 
              "https://doi.org/10.1007/s00299-015-1889-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050781258", 
              "https://doi.org/10.1038/ng.3352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2725", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039101550", 
              "https://doi.org/10.1038/ng.2725"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12284-015-0044-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009599377", 
              "https://doi.org/10.1186/s12284-015-0044-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-018-2187-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104786645", 
              "https://doi.org/10.1007/s10681-018-2187-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-019-1627-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112063597", 
              "https://doi.org/10.1186/s13059-019-1627-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11103-017-0636-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090880913", 
              "https://doi.org/10.1007/s11103-017-0636-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-016-2773-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006441872", 
              "https://doi.org/10.1007/s00122-016-2773-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11738-009-0413-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023316605", 
              "https://doi.org/10.1007/s11738-009-0413-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1025685324830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040751824", 
              "https://doi.org/10.1023/a:1025685324830"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-005-0110-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053267392", 
              "https://doi.org/10.1007/s00122-005-0110-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-003-1388-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033890275", 
              "https://doi.org/10.1007/s00122-003-1388-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-008-9695-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027596952", 
              "https://doi.org/10.1007/s10681-008-9695-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-005-0111-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029716051", 
              "https://doi.org/10.1007/s00122-005-0111-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-001-0837-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018111398", 
              "https://doi.org/10.1007/s00122-001-0837-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12284-015-0053-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037981539", 
              "https://doi.org/10.1186/s12284-015-0053-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-018-2117-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100690321", 
              "https://doi.org/10.1007/s10681-018-2117-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00425-016-2605-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046925645", 
              "https://doi.org/10.1007/s00425-016-2605-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-14-313", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012047696", 
              "https://doi.org/10.1186/1471-2164-14-313"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12870-014-0410-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026544753", 
              "https://doi.org/10.1186/s12870-014-0410-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-008-9847-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043036870", 
              "https://doi.org/10.1007/s10681-008-9847-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4939-3167-5_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013002933", 
              "https://doi.org/10.1007/978-1-4939-3167-5_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11104-015-2404-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038339485", 
              "https://doi.org/10.1007/s11104-015-2404-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2156-15-16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031846566", 
              "https://doi.org/10.1186/1471-2156-15-16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-016-1785-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044359400", 
              "https://doi.org/10.1007/s10681-016-1785-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10709-007-9199-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041019723", 
              "https://doi.org/10.1007/s10709-007-9199-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-020-69442-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1130204910", 
              "https://doi.org/10.1038/s41598-020-69442-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-012-2003-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002591935", 
              "https://doi.org/10.1007/s00122-012-2003-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2156-14-104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029571855", 
              "https://doi.org/10.1186/1471-2156-14-104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12284-015-0049-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032454168", 
              "https://doi.org/10.1186/s12284-015-0049-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12870-015-0532-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037780115", 
              "https://doi.org/10.1186/s12870-015-0532-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep42131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083736580", 
              "https://doi.org/10.1038/srep42131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-012-0683-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046125593", 
              "https://doi.org/10.1007/s10681-012-0683-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-002-1113-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029013500", 
              "https://doi.org/10.1007/s00122-002-1113-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-8-49", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015683007", 
              "https://doi.org/10.1186/1471-2105-8-49"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep07663", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041676764", 
              "https://doi.org/10.1038/srep07663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:euph.0000004987.88718.d6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034594459", 
              "https://doi.org/10.1023/b:euph.0000004987.88718.d6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep03040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011177785", 
              "https://doi.org/10.1038/srep03040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12284-017-0165-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085592030", 
              "https://doi.org/10.1186/s12284-017-0165-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-018-3104-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103952744", 
              "https://doi.org/10.1007/s00122-018-3104-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11103-017-0595-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084504687", 
              "https://doi.org/10.1007/s11103-017-0595-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-003-1390-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043668493", 
              "https://doi.org/10.1007/s00122-003-1390-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-013-0012-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044444381", 
              "https://doi.org/10.1007/s11032-013-0012-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-12-319", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016085778", 
              "https://doi.org/10.1186/1471-2164-12-319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12284-009-9028-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005140460", 
              "https://doi.org/10.1007/s12284-009-9028-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11532", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020113305", 
              "https://doi.org/10.1038/nature11532"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-019-0962-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112899868", 
              "https://doi.org/10.1007/s11032-019-0962-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-020-6702-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1126508227", 
              "https://doi.org/10.1186/s12864-020-6702-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-017-2100-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100679282", 
              "https://doi.org/10.1007/s10681-017-2100-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10725-006-9109-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036233701", 
              "https://doi.org/10.1007/s10725-006-9109-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11105-010-0274-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036770574", 
              "https://doi.org/10.1007/s11105-010-0274-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-014-0068-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001270920", 
              "https://doi.org/10.1007/s11032-014-0068-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00438-016-1227-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041062727", 
              "https://doi.org/10.1007/s00438-016-1227-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-10-276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033377801", 
              "https://doi.org/10.1186/1471-2164-10-276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001220051616", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001758556", 
              "https://doi.org/10.1007/s001220051616"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-03-25", 
        "datePublishedReg": "2021-03-25", 
        "description": "Meta-QTL (MQTL) analysis is a robust approach for genetic dissection of complex quantitative traits. Rice varieties adapted to non-flooded cultivation are highly desirable in breeding programs due to the water deficit global problem. In order to identify stable QTLs for major agronomic traits under water deficit conditions, we performed a comprehensive MQTL analysis on 563 QTLs from 67 rice populations published from 2001 to 2019. Yield and yield-related traits including grain weight, heading date, plant height, tiller number as well as root architecture-related traits including root dry weight, root length, root number, root thickness, the ratio of deep rooting and plant water content under water deficit condition were investigated. A total of 61 stable MQTLs over different genetic backgrounds and environments were identified. The average confidence interval of MQTLs was considerably refined compared to the initial QTLs, resulted in the identification of some well-known functionally characterized genes and several putative novel CGs for investigated traits. Ortho-MQTL mining based on genomic collinearity between rice and maize allowed identification of five ortho-MQTLs between these two cereals. The results can help breeders to improve yield under water deficit conditions.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-021-86259-2", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "keywords": [
          "water deficit conditions", 
          "yield-related traits", 
          "deficit conditions", 
          "non-flooded cultivation", 
          "major agronomic traits", 
          "meta-QTL analysis", 
          "root dry weight", 
          "plant water content", 
          "complex quantitative traits", 
          "average confidence interval", 
          "agronomic traits", 
          "grain weight", 
          "rice yield", 
          "breeding programs", 
          "plant height", 
          "tiller number", 
          "different genetic backgrounds", 
          "stable QTLs", 
          "deep rooting", 
          "initial QTLs", 
          "rice varieties", 
          "rice populations", 
          "root architecture", 
          "root length", 
          "meta-QTL", 
          "mQTL analysis", 
          "root thickness", 
          "root number", 
          "genomic collinearity", 
          "dry weight", 
          "quantitative traits", 
          "genetic dissection", 
          "QTL", 
          "genomic regions", 
          "traits", 
          "water content", 
          "yield", 
          "genetic background", 
          "MQTLs", 
          "maize", 
          "global problem", 
          "cereals", 
          "breeders", 
          "rice", 
          "cultivation", 
          "rooting", 
          "weight", 
          "genes", 
          "height", 
          "identification", 
          "conditions", 
          "collinearity", 
          "variety", 
          "content", 
          "population", 
          "date", 
          "program", 
          "number", 
          "analysis", 
          "environment", 
          "region", 
          "length", 
          "total", 
          "interval", 
          "CG", 
          "robust approach", 
          "dissection", 
          "ratio", 
          "results", 
          "background", 
          "architecture", 
          "order", 
          "mining", 
          "approach", 
          "problem", 
          "confidence intervals", 
          "thickness"
        ], 
        "name": "Meta-QTL and ortho-MQTL analyses identified genomic regions controlling rice yield, yield-related traits and root architecture under water deficit conditions", 
        "pagination": "6942", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1136654646"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-021-86259-2"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "33767323"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-021-86259-2", 
          "https://app.dimensions.ai/details/publication/pub.1136654646"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_880.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-021-86259-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-86259-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-86259-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-86259-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-86259-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    436 TRIPLES      21 PREDICATES      170 URIs      102 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-021-86259-2 schema:about N06af7e08cfc9416bba023f7a3ef89f63
    2 N1021a2780b8445278f962786c56bf4fb
    3 N2e4b7b88487548089a8bde51c903a23b
    4 N7636936ddb714bd5bd3ca8e3e88cae7f
    5 N8e5acb837b9e498695a5c1d4cb8e0c3c
    6 Nc8696cb09fb34c0f913e29840e98ec5e
    7 Ne1f2a240b90f4e1e9eabfb42db44c8dd
    8 Nfeac1d46614b46f293883e11e48f8ef2
    9 anzsrc-for:06
    10 anzsrc-for:0604
    11 anzsrc-for:0607
    12 anzsrc-for:07
    13 anzsrc-for:0703
    14 schema:author N0146b90e530749668d68aa3f573251ba
    15 schema:citation sg:pub.10.1007/978-1-4939-3167-5_6
    16 sg:pub.10.1007/s00122-001-0837-5
    17 sg:pub.10.1007/s00122-002-1113-z
    18 sg:pub.10.1007/s00122-003-1388-8
    19 sg:pub.10.1007/s00122-003-1390-1
    20 sg:pub.10.1007/s00122-005-0110-4
    21 sg:pub.10.1007/s00122-005-0111-3
    22 sg:pub.10.1007/s00122-005-1958-z
    23 sg:pub.10.1007/s00122-012-2003-7
    24 sg:pub.10.1007/s00122-016-2773-4
    25 sg:pub.10.1007/s00122-018-3104-8
    26 sg:pub.10.1007/s001220051616
    27 sg:pub.10.1007/s00299-015-1889-3
    28 sg:pub.10.1007/s00425-016-2605-4
    29 sg:pub.10.1007/s00438-016-1227-7
    30 sg:pub.10.1007/s10681-008-9695-4
    31 sg:pub.10.1007/s10681-008-9847-6
    32 sg:pub.10.1007/s10681-012-0683-3
    33 sg:pub.10.1007/s10681-016-1785-0
    34 sg:pub.10.1007/s10681-017-2100-4
    35 sg:pub.10.1007/s10681-018-2117-3
    36 sg:pub.10.1007/s10681-018-2187-2
    37 sg:pub.10.1007/s10709-007-9199-5
    38 sg:pub.10.1007/s10725-006-9109-3
    39 sg:pub.10.1007/s10725-008-9304-5
    40 sg:pub.10.1007/s11032-013-0012-0
    41 sg:pub.10.1007/s11032-014-0068-5
    42 sg:pub.10.1007/s11032-019-0962-y
    43 sg:pub.10.1007/s11103-017-0595-7
    44 sg:pub.10.1007/s11103-017-0636-2
    45 sg:pub.10.1007/s11104-015-2404-x
    46 sg:pub.10.1007/s11105-010-0274-1
    47 sg:pub.10.1007/s11738-009-0413-1
    48 sg:pub.10.1007/s12284-009-9028-9
    49 sg:pub.10.1023/a:1025685324830
    50 sg:pub.10.1023/b:euph.0000004987.88718.d6
    51 sg:pub.10.1038/nature11532
    52 sg:pub.10.1038/ng.2725
    53 sg:pub.10.1038/ng.3352
    54 sg:pub.10.1038/s41598-020-69442-9
    55 sg:pub.10.1038/srep03040
    56 sg:pub.10.1038/srep07663
    57 sg:pub.10.1038/srep42131
    58 sg:pub.10.1186/1471-2105-8-49
    59 sg:pub.10.1186/1471-2156-14-104
    60 sg:pub.10.1186/1471-2156-15-16
    61 sg:pub.10.1186/1471-2164-10-276
    62 sg:pub.10.1186/1471-2164-12-319
    63 sg:pub.10.1186/1471-2164-14-313
    64 sg:pub.10.1186/s12284-015-0044-7
    65 sg:pub.10.1186/s12284-015-0049-2
    66 sg:pub.10.1186/s12284-015-0053-6
    67 sg:pub.10.1186/s12284-017-0165-2
    68 sg:pub.10.1186/s12864-020-6702-1
    69 sg:pub.10.1186/s12870-014-0410-4
    70 sg:pub.10.1186/s12870-015-0532-3
    71 sg:pub.10.1186/s13059-019-1627-1
    72 schema:datePublished 2021-03-25
    73 schema:datePublishedReg 2021-03-25
    74 schema:description Meta-QTL (MQTL) analysis is a robust approach for genetic dissection of complex quantitative traits. Rice varieties adapted to non-flooded cultivation are highly desirable in breeding programs due to the water deficit global problem. In order to identify stable QTLs for major agronomic traits under water deficit conditions, we performed a comprehensive MQTL analysis on 563 QTLs from 67 rice populations published from 2001 to 2019. Yield and yield-related traits including grain weight, heading date, plant height, tiller number as well as root architecture-related traits including root dry weight, root length, root number, root thickness, the ratio of deep rooting and plant water content under water deficit condition were investigated. A total of 61 stable MQTLs over different genetic backgrounds and environments were identified. The average confidence interval of MQTLs was considerably refined compared to the initial QTLs, resulted in the identification of some well-known functionally characterized genes and several putative novel CGs for investigated traits. Ortho-MQTL mining based on genomic collinearity between rice and maize allowed identification of five ortho-MQTLs between these two cereals. The results can help breeders to improve yield under water deficit conditions.
    75 schema:genre article
    76 schema:isAccessibleForFree true
    77 schema:isPartOf N7faece00a99a424db1c15a9a74c1a12e
    78 N90c63ff00ff3418b80e95d2e11c64880
    79 sg:journal.1045337
    80 schema:keywords CG
    81 MQTLs
    82 QTL
    83 agronomic traits
    84 analysis
    85 approach
    86 architecture
    87 average confidence interval
    88 background
    89 breeders
    90 breeding programs
    91 cereals
    92 collinearity
    93 complex quantitative traits
    94 conditions
    95 confidence intervals
    96 content
    97 cultivation
    98 date
    99 deep rooting
    100 deficit conditions
    101 different genetic backgrounds
    102 dissection
    103 dry weight
    104 environment
    105 genes
    106 genetic background
    107 genetic dissection
    108 genomic collinearity
    109 genomic regions
    110 global problem
    111 grain weight
    112 height
    113 identification
    114 initial QTLs
    115 interval
    116 length
    117 mQTL analysis
    118 maize
    119 major agronomic traits
    120 meta-QTL
    121 meta-QTL analysis
    122 mining
    123 non-flooded cultivation
    124 number
    125 order
    126 plant height
    127 plant water content
    128 population
    129 problem
    130 program
    131 quantitative traits
    132 ratio
    133 region
    134 results
    135 rice
    136 rice populations
    137 rice varieties
    138 rice yield
    139 robust approach
    140 root architecture
    141 root dry weight
    142 root length
    143 root number
    144 root thickness
    145 rooting
    146 stable QTLs
    147 thickness
    148 tiller number
    149 total
    150 traits
    151 variety
    152 water content
    153 water deficit conditions
    154 weight
    155 yield
    156 yield-related traits
    157 schema:name Meta-QTL and ortho-MQTL analyses identified genomic regions controlling rice yield, yield-related traits and root architecture under water deficit conditions
    158 schema:pagination 6942
    159 schema:productId N31e186ab09f04dcfa7b47e587ec42316
    160 N73927fe6aac047c683b6b684aa610cdd
    161 N9bf34cc72cc040b0babf376a709d8b83
    162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1136654646
    163 https://doi.org/10.1038/s41598-021-86259-2
    164 schema:sdDatePublished 2022-11-24T21:07
    165 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    166 schema:sdPublisher N0f37e9c897e64fcf975bfdd7b98a2ebd
    167 schema:url https://doi.org/10.1038/s41598-021-86259-2
    168 sgo:license sg:explorer/license/
    169 sgo:sdDataset articles
    170 rdf:type schema:ScholarlyArticle
    171 N0146b90e530749668d68aa3f573251ba rdf:first sg:person.012177576775.52
    172 rdf:rest N848491f26dc444209740f0dc88fe5f6d
    173 N06af7e08cfc9416bba023f7a3ef89f63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Plant Roots
    175 rdf:type schema:DefinedTerm
    176 N0f37e9c897e64fcf975bfdd7b98a2ebd schema:name Springer Nature - SN SciGraph project
    177 rdf:type schema:Organization
    178 N1021a2780b8445278f962786c56bf4fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Genome, Plant
    180 rdf:type schema:DefinedTerm
    181 N2e4b7b88487548089a8bde51c903a23b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Quantitative Trait Loci
    183 rdf:type schema:DefinedTerm
    184 N31e186ab09f04dcfa7b47e587ec42316 schema:name doi
    185 schema:value 10.1038/s41598-021-86259-2
    186 rdf:type schema:PropertyValue
    187 N57b6ce5ea1724ffd80a851e337705a7c rdf:first sg:person.015120701536.89
    188 rdf:rest Ne39ffbd49c534e1aa23985234d0036e3
    189 N73927fe6aac047c683b6b684aa610cdd schema:name pubmed_id
    190 schema:value 33767323
    191 rdf:type schema:PropertyValue
    192 N7636936ddb714bd5bd3ca8e3e88cae7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    193 schema:name Osmoregulation
    194 rdf:type schema:DefinedTerm
    195 N7faece00a99a424db1c15a9a74c1a12e schema:volumeNumber 11
    196 rdf:type schema:PublicationVolume
    197 N848491f26dc444209740f0dc88fe5f6d rdf:first sg:person.01336740171.95
    198 rdf:rest N57b6ce5ea1724ffd80a851e337705a7c
    199 N8e5acb837b9e498695a5c1d4cb8e0c3c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    200 schema:name Biomass
    201 rdf:type schema:DefinedTerm
    202 N90c63ff00ff3418b80e95d2e11c64880 schema:issueNumber 1
    203 rdf:type schema:PublicationIssue
    204 N9bf34cc72cc040b0babf376a709d8b83 schema:name dimensions_id
    205 schema:value pub.1136654646
    206 rdf:type schema:PropertyValue
    207 Nc8696cb09fb34c0f913e29840e98ec5e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    208 schema:name Droughts
    209 rdf:type schema:DefinedTerm
    210 Ne1f2a240b90f4e1e9eabfb42db44c8dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    211 schema:name Oryza
    212 rdf:type schema:DefinedTerm
    213 Ne39ffbd49c534e1aa23985234d0036e3 rdf:first sg:person.0743416342.96
    214 rdf:rest rdf:nil
    215 Nfeac1d46614b46f293883e11e48f8ef2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    216 schema:name Seeds
    217 rdf:type schema:DefinedTerm
    218 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    219 schema:name Biological Sciences
    220 rdf:type schema:DefinedTerm
    221 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    222 schema:name Genetics
    223 rdf:type schema:DefinedTerm
    224 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    225 schema:name Plant Biology
    226 rdf:type schema:DefinedTerm
    227 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
    228 schema:name Agricultural and Veterinary Sciences
    229 rdf:type schema:DefinedTerm
    230 anzsrc-for:0703 schema:inDefinedTermSet anzsrc-for:
    231 schema:name Crop and Pasture Production
    232 rdf:type schema:DefinedTerm
    233 sg:journal.1045337 schema:issn 2045-2322
    234 schema:name Scientific Reports
    235 schema:publisher Springer Nature
    236 rdf:type schema:Periodical
    237 sg:person.012177576775.52 schema:affiliation grid-institutes:grid.412573.6
    238 schema:familyName Khahani
    239 schema:givenName Bahman
    240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012177576775.52
    241 rdf:type schema:Person
    242 sg:person.01336740171.95 schema:affiliation grid-institutes:grid.412573.6
    243 schema:familyName Tavakol
    244 schema:givenName Elahe
    245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336740171.95
    246 rdf:type schema:Person
    247 sg:person.015120701536.89 schema:affiliation grid-institutes:grid.419420.a
    248 schema:familyName Shariati
    249 schema:givenName Vahid
    250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015120701536.89
    251 rdf:type schema:Person
    252 sg:person.0743416342.96 schema:affiliation grid-institutes:grid.4708.b
    253 schema:familyName Rossini
    254 schema:givenName Laura
    255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743416342.96
    256 rdf:type schema:Person
    257 sg:pub.10.1007/978-1-4939-3167-5_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013002933
    258 https://doi.org/10.1007/978-1-4939-3167-5_6
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1007/s00122-001-0837-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018111398
    261 https://doi.org/10.1007/s00122-001-0837-5
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1007/s00122-002-1113-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1029013500
    264 https://doi.org/10.1007/s00122-002-1113-z
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1007/s00122-003-1388-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033890275
    267 https://doi.org/10.1007/s00122-003-1388-8
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1007/s00122-003-1390-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043668493
    270 https://doi.org/10.1007/s00122-003-1390-1
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1007/s00122-005-0110-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053267392
    273 https://doi.org/10.1007/s00122-005-0110-4
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1007/s00122-005-0111-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029716051
    276 https://doi.org/10.1007/s00122-005-0111-3
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1007/s00122-005-1958-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1024622443
    279 https://doi.org/10.1007/s00122-005-1958-z
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1007/s00122-012-2003-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002591935
    282 https://doi.org/10.1007/s00122-012-2003-7
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1007/s00122-016-2773-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006441872
    285 https://doi.org/10.1007/s00122-016-2773-4
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1007/s00122-018-3104-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103952744
    288 https://doi.org/10.1007/s00122-018-3104-8
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1007/s001220051616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001758556
    291 https://doi.org/10.1007/s001220051616
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1007/s00299-015-1889-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013565956
    294 https://doi.org/10.1007/s00299-015-1889-3
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1007/s00425-016-2605-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046925645
    297 https://doi.org/10.1007/s00425-016-2605-4
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1007/s00438-016-1227-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041062727
    300 https://doi.org/10.1007/s00438-016-1227-7
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1007/s10681-008-9695-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027596952
    303 https://doi.org/10.1007/s10681-008-9695-4
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1007/s10681-008-9847-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043036870
    306 https://doi.org/10.1007/s10681-008-9847-6
    307 rdf:type schema:CreativeWork
    308 sg:pub.10.1007/s10681-012-0683-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046125593
    309 https://doi.org/10.1007/s10681-012-0683-3
    310 rdf:type schema:CreativeWork
    311 sg:pub.10.1007/s10681-016-1785-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044359400
    312 https://doi.org/10.1007/s10681-016-1785-0
    313 rdf:type schema:CreativeWork
    314 sg:pub.10.1007/s10681-017-2100-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100679282
    315 https://doi.org/10.1007/s10681-017-2100-4
    316 rdf:type schema:CreativeWork
    317 sg:pub.10.1007/s10681-018-2117-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100690321
    318 https://doi.org/10.1007/s10681-018-2117-3
    319 rdf:type schema:CreativeWork
    320 sg:pub.10.1007/s10681-018-2187-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104786645
    321 https://doi.org/10.1007/s10681-018-2187-2
    322 rdf:type schema:CreativeWork
    323 sg:pub.10.1007/s10709-007-9199-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041019723
    324 https://doi.org/10.1007/s10709-007-9199-5
    325 rdf:type schema:CreativeWork
    326 sg:pub.10.1007/s10725-006-9109-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036233701
    327 https://doi.org/10.1007/s10725-006-9109-3
    328 rdf:type schema:CreativeWork
    329 sg:pub.10.1007/s10725-008-9304-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009799632
    330 https://doi.org/10.1007/s10725-008-9304-5
    331 rdf:type schema:CreativeWork
    332 sg:pub.10.1007/s11032-013-0012-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044444381
    333 https://doi.org/10.1007/s11032-013-0012-0
    334 rdf:type schema:CreativeWork
    335 sg:pub.10.1007/s11032-014-0068-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001270920
    336 https://doi.org/10.1007/s11032-014-0068-5
    337 rdf:type schema:CreativeWork
    338 sg:pub.10.1007/s11032-019-0962-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1112899868
    339 https://doi.org/10.1007/s11032-019-0962-y
    340 rdf:type schema:CreativeWork
    341 sg:pub.10.1007/s11103-017-0595-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084504687
    342 https://doi.org/10.1007/s11103-017-0595-7
    343 rdf:type schema:CreativeWork
    344 sg:pub.10.1007/s11103-017-0636-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090880913
    345 https://doi.org/10.1007/s11103-017-0636-2
    346 rdf:type schema:CreativeWork
    347 sg:pub.10.1007/s11104-015-2404-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038339485
    348 https://doi.org/10.1007/s11104-015-2404-x
    349 rdf:type schema:CreativeWork
    350 sg:pub.10.1007/s11105-010-0274-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036770574
    351 https://doi.org/10.1007/s11105-010-0274-1
    352 rdf:type schema:CreativeWork
    353 sg:pub.10.1007/s11738-009-0413-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023316605
    354 https://doi.org/10.1007/s11738-009-0413-1
    355 rdf:type schema:CreativeWork
    356 sg:pub.10.1007/s12284-009-9028-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005140460
    357 https://doi.org/10.1007/s12284-009-9028-9
    358 rdf:type schema:CreativeWork
    359 sg:pub.10.1023/a:1025685324830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040751824
    360 https://doi.org/10.1023/a:1025685324830
    361 rdf:type schema:CreativeWork
    362 sg:pub.10.1023/b:euph.0000004987.88718.d6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034594459
    363 https://doi.org/10.1023/b:euph.0000004987.88718.d6
    364 rdf:type schema:CreativeWork
    365 sg:pub.10.1038/nature11532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020113305
    366 https://doi.org/10.1038/nature11532
    367 rdf:type schema:CreativeWork
    368 sg:pub.10.1038/ng.2725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039101550
    369 https://doi.org/10.1038/ng.2725
    370 rdf:type schema:CreativeWork
    371 sg:pub.10.1038/ng.3352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050781258
    372 https://doi.org/10.1038/ng.3352
    373 rdf:type schema:CreativeWork
    374 sg:pub.10.1038/s41598-020-69442-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130204910
    375 https://doi.org/10.1038/s41598-020-69442-9
    376 rdf:type schema:CreativeWork
    377 sg:pub.10.1038/srep03040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011177785
    378 https://doi.org/10.1038/srep03040
    379 rdf:type schema:CreativeWork
    380 sg:pub.10.1038/srep07663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041676764
    381 https://doi.org/10.1038/srep07663
    382 rdf:type schema:CreativeWork
    383 sg:pub.10.1038/srep42131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083736580
    384 https://doi.org/10.1038/srep42131
    385 rdf:type schema:CreativeWork
    386 sg:pub.10.1186/1471-2105-8-49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015683007
    387 https://doi.org/10.1186/1471-2105-8-49
    388 rdf:type schema:CreativeWork
    389 sg:pub.10.1186/1471-2156-14-104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029571855
    390 https://doi.org/10.1186/1471-2156-14-104
    391 rdf:type schema:CreativeWork
    392 sg:pub.10.1186/1471-2156-15-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031846566
    393 https://doi.org/10.1186/1471-2156-15-16
    394 rdf:type schema:CreativeWork
    395 sg:pub.10.1186/1471-2164-10-276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033377801
    396 https://doi.org/10.1186/1471-2164-10-276
    397 rdf:type schema:CreativeWork
    398 sg:pub.10.1186/1471-2164-12-319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016085778
    399 https://doi.org/10.1186/1471-2164-12-319
    400 rdf:type schema:CreativeWork
    401 sg:pub.10.1186/1471-2164-14-313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012047696
    402 https://doi.org/10.1186/1471-2164-14-313
    403 rdf:type schema:CreativeWork
    404 sg:pub.10.1186/s12284-015-0044-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009599377
    405 https://doi.org/10.1186/s12284-015-0044-7
    406 rdf:type schema:CreativeWork
    407 sg:pub.10.1186/s12284-015-0049-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032454168
    408 https://doi.org/10.1186/s12284-015-0049-2
    409 rdf:type schema:CreativeWork
    410 sg:pub.10.1186/s12284-015-0053-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037981539
    411 https://doi.org/10.1186/s12284-015-0053-6
    412 rdf:type schema:CreativeWork
    413 sg:pub.10.1186/s12284-017-0165-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085592030
    414 https://doi.org/10.1186/s12284-017-0165-2
    415 rdf:type schema:CreativeWork
    416 sg:pub.10.1186/s12864-020-6702-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126508227
    417 https://doi.org/10.1186/s12864-020-6702-1
    418 rdf:type schema:CreativeWork
    419 sg:pub.10.1186/s12870-014-0410-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026544753
    420 https://doi.org/10.1186/s12870-014-0410-4
    421 rdf:type schema:CreativeWork
    422 sg:pub.10.1186/s12870-015-0532-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037780115
    423 https://doi.org/10.1186/s12870-015-0532-3
    424 rdf:type schema:CreativeWork
    425 sg:pub.10.1186/s13059-019-1627-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112063597
    426 https://doi.org/10.1186/s13059-019-1627-1
    427 rdf:type schema:CreativeWork
    428 grid-institutes:grid.412573.6 schema:alternateName Department of Plant Genetics and Production, College of Agriculture, Shiraz University, Shiraz, Iran
    429 schema:name Department of Plant Genetics and Production, College of Agriculture, Shiraz University, Shiraz, Iran
    430 rdf:type schema:Organization
    431 grid-institutes:grid.419420.a schema:alternateName NIGEB Genome Center, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
    432 schema:name NIGEB Genome Center, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
    433 rdf:type schema:Organization
    434 grid-institutes:grid.4708.b schema:alternateName Università degli Studi di Milano-DiSAA, Milan, Italy
    435 schema:name Università degli Studi di Milano-DiSAA, Milan, Italy
    436 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...