Functional profiling of COVID-19 respiratory tract microbiomes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-03-19

AUTHORS

Niina Haiminen, Filippo Utro, Ed Seabolt, Laxmi Parida

ABSTRACT

In response to the ongoing global pandemic, characterizing the molecular-level host interactions of the new coronavirus SARS-CoV-2 responsible for COVID-19 has been at the center of unprecedented scientific focus. However, when the virus enters the body it also interacts with the micro-organisms already inhabiting the host. Understanding the virus-host-microbiome interactions can yield additional insights into the biological processes perturbed by viral invasion. Alterations in the gut microbiome species and metabolites have been noted during respiratory viral infections, possibly impacting the lungs via gut-lung microbiome crosstalk. To better characterize microbial functions in the lower respiratory tract during COVID-19 infection, we carry out a functional analysis of previously published metatranscriptome sequencing data of bronchoalveolar lavage fluid from eight COVID-19 cases, twenty-five community-acquired pneumonia patients, and twenty healthy controls. The functional profiles resulting from comparing the sequences against annotated microbial protein domains clearly separate the cohorts. By examining the associated metabolic pathways, distinguishing functional signatures in COVID-19 respiratory tract microbiomes are identified, including decreased potential for lipid metabolism and glycan biosynthesis and metabolism pathways, and increased potential for carbohydrate metabolism pathways. The results include overlap between previous studies on COVID-19 microbiomes, including decrease in the glycosaminoglycan degradation pathway and increase in carbohydrate metabolism. The results also suggest novel connections to consider, possibly specific to the lower respiratory tract microbiome, calling for further research on microbial functions and host-microbiome interactions during SARS-CoV-2 infection. More... »

PAGES

6433

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-021-85750-0

DOI

http://dx.doi.org/10.1038/s41598-021-85750-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1136505819

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/33742096


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bronchoalveolar Lavage Fluid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "COVID-19", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microbial Interactions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microbiota", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Respiratory System", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "SARS-CoV-2", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IBM T. J. Watson Research Center, Yorktown Heights, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM T. J. Watson Research Center, Yorktown Heights, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haiminen", 
        "givenName": "Niina", 
        "id": "sg:person.0746114007.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746114007.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM T. J. Watson Research Center, Yorktown Heights, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM T. J. Watson Research Center, Yorktown Heights, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Utro", 
        "givenName": "Filippo", 
        "id": "sg:person.01176571007.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176571007.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Almaden Research Center, San Jose, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Almaden Research Center, San Jose, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seabolt", 
        "givenName": "Ed", 
        "id": "sg:person.015406134746.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015406134746.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM T. J. Watson Research Center, Yorktown Heights, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM T. J. Watson Research Center, Yorktown Heights, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parida", 
        "givenName": "Laxmi", 
        "id": "sg:person.01336557015.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336557015.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2164-15-s6-s18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051573992", 
          "https://doi.org/10.1186/1471-2164-15-s6-s18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-020-2012-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1124545162", 
          "https://doi.org/10.1038/s41586-020-2012-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41385-020-00361-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1134850659", 
          "https://doi.org/10.1038/s41385-020-00361-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s42600-020-00113-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1132897621", 
          "https://doi.org/10.1007/s42600-020-00113-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037780208", 
          "https://doi.org/10.1186/1471-2105-12-385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-020-2008-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1124545567", 
          "https://doi.org/10.1038/s41586-020-2008-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41591-020-0820-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1125686004", 
          "https://doi.org/10.1038/s41591-020-0820-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40168-020-00971-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1134465575", 
          "https://doi.org/10.1186/s40168-020-00971-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-03-19", 
    "datePublishedReg": "2021-03-19", 
    "description": "In response to the ongoing global pandemic, characterizing the molecular-level host interactions of the new coronavirus SARS-CoV-2 responsible for COVID-19 has been at the center of unprecedented scientific focus. However, when the virus enters the body it also interacts with the micro-organisms already inhabiting the host. Understanding the virus-host-microbiome interactions can yield additional insights into the biological processes perturbed by viral invasion. Alterations in the gut microbiome species and metabolites have been noted during respiratory viral infections, possibly impacting the lungs via gut-lung microbiome crosstalk. To better characterize microbial functions in the lower respiratory tract during COVID-19 infection, we carry out a functional analysis of previously published metatranscriptome sequencing data of bronchoalveolar lavage fluid from eight COVID-19 cases, twenty-five community-acquired pneumonia patients, and twenty healthy controls. The functional profiles resulting from comparing the sequences against annotated microbial protein domains clearly separate the cohorts. By examining the associated metabolic pathways, distinguishing functional signatures in COVID-19 respiratory tract microbiomes are identified, including decreased potential for lipid metabolism and glycan biosynthesis and metabolism pathways, and increased potential for carbohydrate metabolism pathways. The results include overlap between previous studies on COVID-19 microbiomes, including decrease in the glycosaminoglycan degradation pathway and increase in carbohydrate metabolism. The results also suggest novel connections to consider, possibly specific to the lower respiratory tract microbiome, calling for further research on microbial functions and host-microbiome interactions during SARS-CoV-2 infection.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-021-85750-0", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "microbial functions", 
      "respiratory tract microbiome", 
      "metabolism pathways", 
      "carbohydrate metabolism pathways", 
      "glycosaminoglycan degradation pathways", 
      "host-microbiome interactions", 
      "protein domains", 
      "glycan biosynthesis", 
      "gut microbiome species", 
      "functional profiling", 
      "sequencing data", 
      "microbiome species", 
      "microbiome interactions", 
      "functional analysis", 
      "biological processes", 
      "host interactions", 
      "metabolic pathways", 
      "lower respiratory tract microbiome", 
      "community-acquired pneumonia patients", 
      "SARS-CoV-2 infection", 
      "respiratory viral infections", 
      "functional profiles", 
      "functional signatures", 
      "bronchoalveolar lavage fluid", 
      "lower respiratory tract", 
      "microbiome", 
      "degradation pathway", 
      "new coronavirus SARS-CoV-2", 
      "novel connection", 
      "COVID-19 infection", 
      "coronavirus SARS-CoV-2", 
      "micro-organisms", 
      "carbohydrate metabolism", 
      "SARS-CoV-2", 
      "pathway", 
      "lipid metabolism", 
      "ongoing global pandemic", 
      "viral invasion", 
      "lavage fluid", 
      "pneumonia patients", 
      "COVID-19 cases", 
      "healthy controls", 
      "respiratory tract", 
      "viral infection", 
      "metabolism", 
      "infection", 
      "COVID-19", 
      "biosynthesis", 
      "global pandemic", 
      "species", 
      "profiling", 
      "interaction", 
      "additional insight", 
      "crosstalk", 
      "host", 
      "sequence", 
      "invasion", 
      "further research", 
      "previous studies", 
      "scientific focus", 
      "function", 
      "patients", 
      "lung", 
      "cohort", 
      "domain", 
      "metabolites", 
      "tract", 
      "alterations", 
      "virus", 
      "insights", 
      "signatures", 
      "overlap", 
      "potential", 
      "pandemic", 
      "response", 
      "decrease", 
      "control", 
      "cases", 
      "center", 
      "study", 
      "profile", 
      "body", 
      "analysis", 
      "fluid", 
      "results", 
      "process", 
      "data", 
      "focus", 
      "research", 
      "connection"
    ], 
    "name": "Functional profiling of COVID-19 respiratory tract microbiomes", 
    "pagination": "6433", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1136505819"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-021-85750-0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "33742096"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-021-85750-0", 
      "https://app.dimensions.ai/details/publication/pub.1136505819"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_911.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-021-85750-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-85750-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-85750-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-85750-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-85750-0'


 

This table displays all metadata directly associated to this object as RDF triples.

246 TRIPLES      21 PREDICATES      133 URIs      115 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-021-85750-0 schema:about N09d6f8d800274415a1f72d892ff9d2c5
2 N327e92c3e8e349cdb868eb74802c9ee3
3 N3d31279af8bf4e77a95c05a59aec99f7
4 N43ce7a2cbc2a45c5b5c04a21722bed58
5 N5e8b7c85e07745c2abb589bdd1acb4f4
6 N9414d2c50d124ef38c2f25e27f125fb3
7 Naffdeab53d1e4051831eed077f1aa377
8 Nbe2efa10654a411e9d375f4b30915f6b
9 anzsrc-for:06
10 anzsrc-for:0605
11 anzsrc-for:11
12 anzsrc-for:1108
13 schema:author N936c3af0fc4f40469b62f99b818bd17e
14 schema:citation sg:pub.10.1007/s42600-020-00113-4
15 sg:pub.10.1038/s41385-020-00361-8
16 sg:pub.10.1038/s41586-020-2008-3
17 sg:pub.10.1038/s41586-020-2012-7
18 sg:pub.10.1038/s41591-020-0820-9
19 sg:pub.10.1186/1471-2105-12-385
20 sg:pub.10.1186/1471-2164-15-s6-s18
21 sg:pub.10.1186/s40168-020-00971-1
22 schema:datePublished 2021-03-19
23 schema:datePublishedReg 2021-03-19
24 schema:description In response to the ongoing global pandemic, characterizing the molecular-level host interactions of the new coronavirus SARS-CoV-2 responsible for COVID-19 has been at the center of unprecedented scientific focus. However, when the virus enters the body it also interacts with the micro-organisms already inhabiting the host. Understanding the virus-host-microbiome interactions can yield additional insights into the biological processes perturbed by viral invasion. Alterations in the gut microbiome species and metabolites have been noted during respiratory viral infections, possibly impacting the lungs via gut-lung microbiome crosstalk. To better characterize microbial functions in the lower respiratory tract during COVID-19 infection, we carry out a functional analysis of previously published metatranscriptome sequencing data of bronchoalveolar lavage fluid from eight COVID-19 cases, twenty-five community-acquired pneumonia patients, and twenty healthy controls. The functional profiles resulting from comparing the sequences against annotated microbial protein domains clearly separate the cohorts. By examining the associated metabolic pathways, distinguishing functional signatures in COVID-19 respiratory tract microbiomes are identified, including decreased potential for lipid metabolism and glycan biosynthesis and metabolism pathways, and increased potential for carbohydrate metabolism pathways. The results include overlap between previous studies on COVID-19 microbiomes, including decrease in the glycosaminoglycan degradation pathway and increase in carbohydrate metabolism. The results also suggest novel connections to consider, possibly specific to the lower respiratory tract microbiome, calling for further research on microbial functions and host-microbiome interactions during SARS-CoV-2 infection.
25 schema:genre article
26 schema:isAccessibleForFree true
27 schema:isPartOf N6d94e38ad1914ac4b7f8ffa6701c681c
28 Na041e522fb144b44bc99941e3145137d
29 sg:journal.1045337
30 schema:keywords COVID-19
31 COVID-19 cases
32 COVID-19 infection
33 SARS-CoV-2
34 SARS-CoV-2 infection
35 additional insight
36 alterations
37 analysis
38 biological processes
39 biosynthesis
40 body
41 bronchoalveolar lavage fluid
42 carbohydrate metabolism
43 carbohydrate metabolism pathways
44 cases
45 center
46 cohort
47 community-acquired pneumonia patients
48 connection
49 control
50 coronavirus SARS-CoV-2
51 crosstalk
52 data
53 decrease
54 degradation pathway
55 domain
56 fluid
57 focus
58 function
59 functional analysis
60 functional profiles
61 functional profiling
62 functional signatures
63 further research
64 global pandemic
65 glycan biosynthesis
66 glycosaminoglycan degradation pathways
67 gut microbiome species
68 healthy controls
69 host
70 host interactions
71 host-microbiome interactions
72 infection
73 insights
74 interaction
75 invasion
76 lavage fluid
77 lipid metabolism
78 lower respiratory tract
79 lower respiratory tract microbiome
80 lung
81 metabolic pathways
82 metabolism
83 metabolism pathways
84 metabolites
85 micro-organisms
86 microbial functions
87 microbiome
88 microbiome interactions
89 microbiome species
90 new coronavirus SARS-CoV-2
91 novel connection
92 ongoing global pandemic
93 overlap
94 pandemic
95 pathway
96 patients
97 pneumonia patients
98 potential
99 previous studies
100 process
101 profile
102 profiling
103 protein domains
104 research
105 respiratory tract
106 respiratory tract microbiome
107 respiratory viral infections
108 response
109 results
110 scientific focus
111 sequence
112 sequencing data
113 signatures
114 species
115 study
116 tract
117 viral infection
118 viral invasion
119 virus
120 schema:name Functional profiling of COVID-19 respiratory tract microbiomes
121 schema:pagination 6433
122 schema:productId N0a37ff00ff05455db2cf5f50624554a1
123 N5ae0337b63494a429399eee01e2bc350
124 Nc6c62647f7e74249b1cc6768b685ed96
125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1136505819
126 https://doi.org/10.1038/s41598-021-85750-0
127 schema:sdDatePublished 2022-10-01T06:49
128 schema:sdLicense https://scigraph.springernature.com/explorer/license/
129 schema:sdPublisher N7c66008ca79a462080b2a849f43947db
130 schema:url https://doi.org/10.1038/s41598-021-85750-0
131 sgo:license sg:explorer/license/
132 sgo:sdDataset articles
133 rdf:type schema:ScholarlyArticle
134 N09d6f8d800274415a1f72d892ff9d2c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Microbiota
136 rdf:type schema:DefinedTerm
137 N0a37ff00ff05455db2cf5f50624554a1 schema:name pubmed_id
138 schema:value 33742096
139 rdf:type schema:PropertyValue
140 N22bc7188d9ef4aea9df6d3c2b55f6087 rdf:first sg:person.015406134746.71
141 rdf:rest N6906ac07393f4ffd827d63d56d1c7220
142 N327e92c3e8e349cdb868eb74802c9ee3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name SARS-CoV-2
144 rdf:type schema:DefinedTerm
145 N3d31279af8bf4e77a95c05a59aec99f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Microbial Interactions
147 rdf:type schema:DefinedTerm
148 N43ce7a2cbc2a45c5b5c04a21722bed58 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Bronchoalveolar Lavage Fluid
150 rdf:type schema:DefinedTerm
151 N5ae0337b63494a429399eee01e2bc350 schema:name dimensions_id
152 schema:value pub.1136505819
153 rdf:type schema:PropertyValue
154 N5e8b7c85e07745c2abb589bdd1acb4f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Respiratory System
156 rdf:type schema:DefinedTerm
157 N66e96e97d366432c960b875ad9997537 rdf:first sg:person.01176571007.38
158 rdf:rest N22bc7188d9ef4aea9df6d3c2b55f6087
159 N6906ac07393f4ffd827d63d56d1c7220 rdf:first sg:person.01336557015.68
160 rdf:rest rdf:nil
161 N6d94e38ad1914ac4b7f8ffa6701c681c schema:volumeNumber 11
162 rdf:type schema:PublicationVolume
163 N7c66008ca79a462080b2a849f43947db schema:name Springer Nature - SN SciGraph project
164 rdf:type schema:Organization
165 N936c3af0fc4f40469b62f99b818bd17e rdf:first sg:person.0746114007.76
166 rdf:rest N66e96e97d366432c960b875ad9997537
167 N9414d2c50d124ef38c2f25e27f125fb3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Humans
169 rdf:type schema:DefinedTerm
170 Na041e522fb144b44bc99941e3145137d schema:issueNumber 1
171 rdf:type schema:PublicationIssue
172 Naffdeab53d1e4051831eed077f1aa377 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Lung
174 rdf:type schema:DefinedTerm
175 Nbe2efa10654a411e9d375f4b30915f6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name COVID-19
177 rdf:type schema:DefinedTerm
178 Nc6c62647f7e74249b1cc6768b685ed96 schema:name doi
179 schema:value 10.1038/s41598-021-85750-0
180 rdf:type schema:PropertyValue
181 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
182 schema:name Biological Sciences
183 rdf:type schema:DefinedTerm
184 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
185 schema:name Microbiology
186 rdf:type schema:DefinedTerm
187 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
188 schema:name Medical and Health Sciences
189 rdf:type schema:DefinedTerm
190 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
191 schema:name Medical Microbiology
192 rdf:type schema:DefinedTerm
193 sg:journal.1045337 schema:issn 2045-2322
194 schema:name Scientific Reports
195 schema:publisher Springer Nature
196 rdf:type schema:Periodical
197 sg:person.01176571007.38 schema:affiliation grid-institutes:grid.481554.9
198 schema:familyName Utro
199 schema:givenName Filippo
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176571007.38
201 rdf:type schema:Person
202 sg:person.01336557015.68 schema:affiliation grid-institutes:grid.481554.9
203 schema:familyName Parida
204 schema:givenName Laxmi
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336557015.68
206 rdf:type schema:Person
207 sg:person.015406134746.71 schema:affiliation grid-institutes:grid.481551.c
208 schema:familyName Seabolt
209 schema:givenName Ed
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015406134746.71
211 rdf:type schema:Person
212 sg:person.0746114007.76 schema:affiliation grid-institutes:grid.481554.9
213 schema:familyName Haiminen
214 schema:givenName Niina
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746114007.76
216 rdf:type schema:Person
217 sg:pub.10.1007/s42600-020-00113-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132897621
218 https://doi.org/10.1007/s42600-020-00113-4
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/s41385-020-00361-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134850659
221 https://doi.org/10.1038/s41385-020-00361-8
222 rdf:type schema:CreativeWork
223 sg:pub.10.1038/s41586-020-2008-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124545567
224 https://doi.org/10.1038/s41586-020-2008-3
225 rdf:type schema:CreativeWork
226 sg:pub.10.1038/s41586-020-2012-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124545162
227 https://doi.org/10.1038/s41586-020-2012-7
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/s41591-020-0820-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125686004
230 https://doi.org/10.1038/s41591-020-0820-9
231 rdf:type schema:CreativeWork
232 sg:pub.10.1186/1471-2105-12-385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037780208
233 https://doi.org/10.1186/1471-2105-12-385
234 rdf:type schema:CreativeWork
235 sg:pub.10.1186/1471-2164-15-s6-s18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051573992
236 https://doi.org/10.1186/1471-2164-15-s6-s18
237 rdf:type schema:CreativeWork
238 sg:pub.10.1186/s40168-020-00971-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134465575
239 https://doi.org/10.1186/s40168-020-00971-1
240 rdf:type schema:CreativeWork
241 grid-institutes:grid.481551.c schema:alternateName IBM Almaden Research Center, San Jose, CA, USA
242 schema:name IBM Almaden Research Center, San Jose, CA, USA
243 rdf:type schema:Organization
244 grid-institutes:grid.481554.9 schema:alternateName IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
245 schema:name IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
246 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...