Prospective study of dynamic whole-body 68Ga-DOTATOC-PET/CT acquisition in patients with well-differentiated neuroendocrine tumors View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-03-01

AUTHORS

Philippe Thuillier, David Bourhis, Jean Philippe Metges, Romain Le Pennec, Karim Amrane, Ulrike Schick, Frédérique Blanc-Beguin, Simon Hennebicq, Pierre-Yves Salaun, Véronique Kerlan, Nicolas Karakatsanis, Ronan Abgral

ABSTRACT

To present the feasibility of a dynamic whole-body (DWB) 68Ga-DOTATOC-PET/CT acquisition in patients with well-differentiated neuroendocrine tumors (WD-NETs). Sixty-one patients who underwent a DWB 68Ga-DOTATOC-PET/CT for a histologically proven/highly suspected WD-NET were prospectively included. The acquisition consisted in single-bed dynamic acquisition centered on the heart, followed by the DWB and static acquisitions. For liver, spleen and tumor (1–5/patient), Ki values (in ml/min/100 ml) were calculated according to Patlak's analysis and tumor-to-liver (TLR-Ki) and tumor-to-spleen ratios (TSR-Ki) were recorded. Ki-based parameters were compared to static parameters (SUVmax/SUVmean, TLR/TSRmean, according to liver/spleen SUVmean), in the whole-cohort and according to the PET system (analog/digital). A correlation analysis between SUVmean/Ki was performed using linear and non-linear regressions. Ki-liver was not influenced by the PET system used, unlike SUVmax/SUVmean. The regression analysis showed a non-linear relation between Ki/SUVmean (R2 = 0.55,0.68 and 0.71 for liver, spleen and tumor uptake, respectively) and a linear relation between TLRmean/TLR-Ki (R2 = 0.75). These results were not affected by the PET system, on the contrary of the relation between TSRmean/TSR-Ki (R2 = 0.94 and 0.73 using linear and non-linear regressions in digital and analog systems, respectively). Our study is the first showing the feasibility of a DWB 68Ga-DOTATOC-PET/CT acquisition in WD-NETs. More... »

PAGES

4727

References to SciGraph publications

  • 2018-01-24. Changes in biodistribution on 68Ga-DOTA-Octreotate PET/CT after long acting somatostatin analogue therapy in neuroendocrine tumour patients may result in pseudoprogression in CANCER IMAGING
  • 2019-02-22. The Correlation Between [68Ga]DOTATATE PET/CT and Cell Proliferation in Patients With GEP-NENs in MOLECULAR IMAGING AND BIOLOGY
  • 2014-10-16. SUV of [68Ga]DOTATOC-PET/CT Predicts Response Probability of PRRT in Neuroendocrine Tumors in MOLECULAR IMAGING AND BIOLOGY
  • 2006-06-09. Comparison of the pharmacokinetics of 68Ga-DOTATOC and [18F]FDG in patients with metastatic neuroendocrine tumours scheduled for 90Y-DOTATOC therapy in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 1993-08. Somatostatin receptor scintigraphy with [111In-DTPA-d-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2010-03-25. Quantifizierung der Somatostatinrezeptorexpression neuroendokriner Tumoren mit der 68Ga-DOTATATE-PET/CT in DER RADIOLOGE
  • 2011-11-09. Natural history of gastro-entero-pancreatic and thoracic neuroendocrine tumors. Data from a large prospective and retrospective Italian Epidemiological study: THE NET MANAGEMENT STUDY in JOURNAL OF ENDOCRINOLOGICAL INVESTIGATION
  • 2018-09-29. Dynamic whole-body PET imaging: principles, potentials and applications in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2011-09-20. The tumour sink effect on the biodistribution of 68Ga-DOTA-octreotate: implications for peptide receptor radionuclide therapy in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-021-83965-9

    DOI

    http://dx.doi.org/10.1038/s41598-021-83965-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1135822346

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/33649421


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neuroendocrine Tumors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Octreotide", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Organometallic Compounds", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Positron Emission Tomography Computed Tomography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Radionuclide Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Spleen", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tomography, X-Ray Computed", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "EA GETBO 3878, University Hospital of Brest, Brest, France", 
              "id": "http://www.grid.ac/institutes/grid.411766.3", 
              "name": [
                "Department of Endocrinology, University Hospital of Brest, Boulevard Tanguy Prigent, 29609, Brest cedex, France", 
                "EA GETBO 3878, University Hospital of Brest, Brest, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thuillier", 
            "givenName": "Philippe", 
            "id": "sg:person.01144704141.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144704141.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, University Hospital of Brest, Brest, France", 
              "id": "http://www.grid.ac/institutes/grid.411766.3", 
              "name": [
                "EA GETBO 3878, University Hospital of Brest, Brest, France", 
                "Department of Nuclear Medicine, University Hospital of Brest, Brest, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bourhis", 
            "givenName": "David", 
            "id": "sg:person.0636567456.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636567456.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Oncology, University Hospital of Brest, Brest, France", 
              "id": "http://www.grid.ac/institutes/grid.411766.3", 
              "name": [
                "Department of Oncology, University Hospital of Brest, Brest, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Metges", 
            "givenName": "Jean Philippe", 
            "id": "sg:person.01004714143.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004714143.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, University Hospital of Brest, Brest, France", 
              "id": "http://www.grid.ac/institutes/grid.411766.3", 
              "name": [
                "EA GETBO 3878, University Hospital of Brest, Brest, France", 
                "Department of Nuclear Medicine, University Hospital of Brest, Brest, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Le Pennec", 
            "givenName": "Romain", 
            "id": "sg:person.015174542517.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015174542517.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiotherapy, University Hospital of Brest, Brest, France", 
              "id": "http://www.grid.ac/institutes/grid.411766.3", 
              "name": [
                "Department of Radiotherapy, University Hospital of Brest, Brest, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Amrane", 
            "givenName": "Karim", 
            "id": "sg:person.011363317125.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011363317125.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiotherapy, University Hospital of Brest, Brest, France", 
              "id": "http://www.grid.ac/institutes/grid.411766.3", 
              "name": [
                "Department of Radiotherapy, University Hospital of Brest, Brest, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schick", 
            "givenName": "Ulrike", 
            "id": "sg:person.01206441206.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206441206.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, University Hospital of Brest, Brest, France", 
              "id": "http://www.grid.ac/institutes/grid.411766.3", 
              "name": [
                "EA GETBO 3878, University Hospital of Brest, Brest, France", 
                "Department of Nuclear Medicine, University Hospital of Brest, Brest, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Blanc-Beguin", 
            "givenName": "Fr\u00e9d\u00e9rique", 
            "id": "sg:person.07567241445.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07567241445.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, University Hospital of Brest, Brest, France", 
              "id": "http://www.grid.ac/institutes/grid.411766.3", 
              "name": [
                "EA GETBO 3878, University Hospital of Brest, Brest, France", 
                "Department of Nuclear Medicine, University Hospital of Brest, Brest, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hennebicq", 
            "givenName": "Simon", 
            "id": "sg:person.016351016525.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016351016525.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, University Hospital of Brest, Brest, France", 
              "id": "http://www.grid.ac/institutes/grid.411766.3", 
              "name": [
                "EA GETBO 3878, University Hospital of Brest, Brest, France", 
                "Department of Nuclear Medicine, University Hospital of Brest, Brest, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Salaun", 
            "givenName": "Pierre-Yves", 
            "id": "sg:person.01021766527.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021766527.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "EA GETBO 3878, University Hospital of Brest, Brest, France", 
              "id": "http://www.grid.ac/institutes/grid.411766.3", 
              "name": [
                "Department of Endocrinology, University Hospital of Brest, Boulevard Tanguy Prigent, 29609, Brest cedex, France", 
                "EA GETBO 3878, University Hospital of Brest, Brest, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kerlan", 
            "givenName": "V\u00e9ronique", 
            "id": "sg:person.01031317430.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031317430.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Weil Cornell Medical College of Cornell University, New York, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "Department of Radiology, Weil Cornell Medical College of Cornell University, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Karakatsanis", 
            "givenName": "Nicolas", 
            "id": "sg:person.015525025162.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015525025162.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Nuclear Medicine, University Hospital of Brest, Brest, France", 
              "id": "http://www.grid.ac/institutes/grid.411766.3", 
              "name": [
                "EA GETBO 3878, University Hospital of Brest, Brest, France", 
                "Department of Nuclear Medicine, University Hospital of Brest, Brest, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Abgral", 
            "givenName": "Ronan", 
            "id": "sg:person.01310147073.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310147073.34"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00117-009-1972-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021355523", 
              "https://doi.org/10.1007/s00117-009-1972-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-006-0110-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029239080", 
              "https://doi.org/10.1007/s00259-006-0110-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-018-4153-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107306333", 
              "https://doi.org/10.1007/s00259-018-4153-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3275/8102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1078475253", 
              "https://doi.org/10.3275/8102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00181765", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016946247", 
              "https://doi.org/10.1007/bf00181765"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11307-019-01328-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112305565", 
              "https://doi.org/10.1007/s11307-019-01328-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-011-1937-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025979788", 
              "https://doi.org/10.1007/s00259-011-1937-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40644-018-0136-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100590847", 
              "https://doi.org/10.1186/s40644-018-0136-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11307-014-0795-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029679413", 
              "https://doi.org/10.1007/s11307-014-0795-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-03-01", 
        "datePublishedReg": "2021-03-01", 
        "description": "To present the feasibility of a dynamic whole-body (DWB) 68Ga-DOTATOC-PET/CT acquisition in patients with well-differentiated neuroendocrine tumors (WD-NETs). Sixty-one patients who underwent a DWB 68Ga-DOTATOC-PET/CT for a histologically proven/highly suspected WD-NET were prospectively included. The acquisition consisted in single-bed dynamic acquisition centered on the heart, followed by the DWB and static acquisitions. For liver, spleen and tumor (1\u20135/patient), Ki values (in ml/min/100\u00a0ml) were calculated according to Patlak's analysis and tumor-to-liver (TLR-Ki) and tumor-to-spleen ratios (TSR-Ki) were recorded. Ki-based parameters were compared to static parameters (SUVmax/SUVmean, TLR/TSRmean, according to liver/spleen SUVmean), in the whole-cohort and according to the PET system (analog/digital). A correlation analysis between SUVmean/Ki was performed using linear and non-linear regressions. Ki-liver was not influenced by the PET system used, unlike SUVmax/SUVmean. The regression analysis showed a non-linear relation between Ki/SUVmean (R2\u2009=\u20090.55,0.68 and 0.71 for liver, spleen and tumor uptake, respectively) and a linear relation between TLRmean/TLR-Ki (R2\u2009=\u20090.75). These results were not affected by the PET system, on the contrary of the relation between TSRmean/TSR-Ki (R2\u2009=\u20090.94 and 0.73 using linear and non-linear regressions in digital and analog systems, respectively). Our study is the first showing the feasibility of a DWB 68Ga-DOTATOC-PET/CT acquisition in WD-NETs.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-021-83965-9", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "keywords": [
          "PET/CT acquisition", 
          "neuroendocrine tumors", 
          "CT acquisition", 
          "PET/CT", 
          "prospective study", 
          "SUVmax/SUVmean", 
          "WD-NET", 
          "spleen ratio", 
          "WD-NETs", 
          "tumors", 
          "patients", 
          "Patlak analysis", 
          "regression analysis", 
          "static acquisition", 
          "SUVmean", 
          "liver", 
          "dynamic acquisition", 
          "spleen", 
          "CT", 
          "correlation analysis", 
          "heart", 
          "study", 
          "regression", 
          "Ki", 
          "analysis", 
          "feasibility", 
          "acquisition", 
          "relation", 
          "DWB", 
          "ratio", 
          "PET system", 
          "results", 
          "contrary", 
          "system", 
          "parameters", 
          "static parameters", 
          "linear relation", 
          "non-linear relation", 
          "non-linear regression"
        ], 
        "name": "Prospective study of dynamic whole-body 68Ga-DOTATOC-PET/CT acquisition in patients with well-differentiated neuroendocrine tumors", 
        "pagination": "4727", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1135822346"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-021-83965-9"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "33649421"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-021-83965-9", 
          "https://app.dimensions.ai/details/publication/pub.1135822346"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:11", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_919.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-021-83965-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-83965-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-83965-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-83965-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-83965-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    274 TRIPLES      21 PREDICATES      86 URIs      69 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-021-83965-9 schema:about N174f9d1d32e748b2b07a16a68bc36c20
    2 N1da41e927de74fce99714c75d79ab9b0
    3 N373e2b6e7ad9485e960cb341b0f1c3a4
    4 N44084a42222b4dc0b1f3ae1565879439
    5 N485740ee65dc447e9ac3551027aa464a
    6 N4a5e98907441414193f314e352bc15ec
    7 N5cb3b2d93a714807a9d567107dded005
    8 N63d1066b64d04a69a3cccc692b828fc9
    9 N6b365d31a0b5410abe8582cc1fe18aa8
    10 N9afacf80f4764fedaa7ea708536643a5
    11 Na6e3c84d49ca4370b332fe9533668a97
    12 Na7d772233a164896bacb000edae8ed1b
    13 Na7fe64edd2034469a0c5293a7a020b7c
    14 anzsrc-for:11
    15 anzsrc-for:1103
    16 schema:author N3ea3d4ae734e403982e0722d3f5f944e
    17 schema:citation sg:pub.10.1007/bf00181765
    18 sg:pub.10.1007/s00117-009-1972-2
    19 sg:pub.10.1007/s00259-006-0110-x
    20 sg:pub.10.1007/s00259-011-1937-3
    21 sg:pub.10.1007/s00259-018-4153-6
    22 sg:pub.10.1007/s11307-014-0795-3
    23 sg:pub.10.1007/s11307-019-01328-3
    24 sg:pub.10.1186/s40644-018-0136-x
    25 sg:pub.10.3275/8102
    26 schema:datePublished 2021-03-01
    27 schema:datePublishedReg 2021-03-01
    28 schema:description To present the feasibility of a dynamic whole-body (DWB) 68Ga-DOTATOC-PET/CT acquisition in patients with well-differentiated neuroendocrine tumors (WD-NETs). Sixty-one patients who underwent a DWB 68Ga-DOTATOC-PET/CT for a histologically proven/highly suspected WD-NET were prospectively included. The acquisition consisted in single-bed dynamic acquisition centered on the heart, followed by the DWB and static acquisitions. For liver, spleen and tumor (1–5/patient), Ki values (in ml/min/100 ml) were calculated according to Patlak's analysis and tumor-to-liver (TLR-Ki) and tumor-to-spleen ratios (TSR-Ki) were recorded. Ki-based parameters were compared to static parameters (SUVmax/SUVmean, TLR/TSRmean, according to liver/spleen SUVmean), in the whole-cohort and according to the PET system (analog/digital). A correlation analysis between SUVmean/Ki was performed using linear and non-linear regressions. Ki-liver was not influenced by the PET system used, unlike SUVmax/SUVmean. The regression analysis showed a non-linear relation between Ki/SUVmean (R2 = 0.55,0.68 and 0.71 for liver, spleen and tumor uptake, respectively) and a linear relation between TLRmean/TLR-Ki (R2 = 0.75). These results were not affected by the PET system, on the contrary of the relation between TSRmean/TSR-Ki (R2 = 0.94 and 0.73 using linear and non-linear regressions in digital and analog systems, respectively). Our study is the first showing the feasibility of a DWB 68Ga-DOTATOC-PET/CT acquisition in WD-NETs.
    29 schema:genre article
    30 schema:isAccessibleForFree true
    31 schema:isPartOf N153c3797ecd045e798cd18f442e820ac
    32 Naacf33d221874b71bf234c2c8bcff6d8
    33 sg:journal.1045337
    34 schema:keywords CT
    35 CT acquisition
    36 DWB
    37 Ki
    38 PET system
    39 PET/CT
    40 PET/CT acquisition
    41 Patlak analysis
    42 SUVmax/SUVmean
    43 SUVmean
    44 WD-NET
    45 WD-NETs
    46 acquisition
    47 analysis
    48 contrary
    49 correlation analysis
    50 dynamic acquisition
    51 feasibility
    52 heart
    53 linear relation
    54 liver
    55 neuroendocrine tumors
    56 non-linear regression
    57 non-linear relation
    58 parameters
    59 patients
    60 prospective study
    61 ratio
    62 regression
    63 regression analysis
    64 relation
    65 results
    66 spleen
    67 spleen ratio
    68 static acquisition
    69 static parameters
    70 study
    71 system
    72 tumors
    73 schema:name Prospective study of dynamic whole-body 68Ga-DOTATOC-PET/CT acquisition in patients with well-differentiated neuroendocrine tumors
    74 schema:pagination 4727
    75 schema:productId N58b55749d2414c9980c158493e4a5420
    76 Nc48c4c9efa6b4e3e9c34f126d1ae3cf9
    77 Nd00236bd42504b84b5e2c900c199a72e
    78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135822346
    79 https://doi.org/10.1038/s41598-021-83965-9
    80 schema:sdDatePublished 2022-08-04T17:11
    81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    82 schema:sdPublisher Nb407dd83ad9249a7b7e8e6054837cda7
    83 schema:url https://doi.org/10.1038/s41598-021-83965-9
    84 sgo:license sg:explorer/license/
    85 sgo:sdDataset articles
    86 rdf:type schema:ScholarlyArticle
    87 N132df71a968e45fd9ff48d6d7c3108fe rdf:first sg:person.015174542517.33
    88 rdf:rest N941bdc6d5c1343c2b9be43b218c8727c
    89 N153c3797ecd045e798cd18f442e820ac schema:issueNumber 1
    90 rdf:type schema:PublicationIssue
    91 N166f41eaa5244ce5b28ab85eac1eac9c rdf:first sg:person.015525025162.55
    92 rdf:rest Nbafd4c432c1642d4ad5a62dbb2638b6a
    93 N174f9d1d32e748b2b07a16a68bc36c20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name Organometallic Compounds
    95 rdf:type schema:DefinedTerm
    96 N1da41e927de74fce99714c75d79ab9b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name Male
    98 rdf:type schema:DefinedTerm
    99 N373e2b6e7ad9485e960cb341b0f1c3a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Middle Aged
    101 rdf:type schema:DefinedTerm
    102 N3ea3d4ae734e403982e0722d3f5f944e rdf:first sg:person.01144704141.74
    103 rdf:rest N70dd15e147ad4d41b56f18121d76dfcc
    104 N44084a42222b4dc0b1f3ae1565879439 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Tomography, X-Ray Computed
    106 rdf:type schema:DefinedTerm
    107 N485740ee65dc447e9ac3551027aa464a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Spleen
    109 rdf:type schema:DefinedTerm
    110 N4a5e98907441414193f314e352bc15ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Humans
    112 rdf:type schema:DefinedTerm
    113 N50609b4f93ac4cf9be736865fdbe3d2f rdf:first sg:person.01206441206.87
    114 rdf:rest N54beda0fa5c843fabe2ed69cbb537213
    115 N54beda0fa5c843fabe2ed69cbb537213 rdf:first sg:person.07567241445.72
    116 rdf:rest N94e703ba2e614a46826df22476f18281
    117 N58b55749d2414c9980c158493e4a5420 schema:name dimensions_id
    118 schema:value pub.1135822346
    119 rdf:type schema:PropertyValue
    120 N5cb3b2d93a714807a9d567107dded005 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Radionuclide Imaging
    122 rdf:type schema:DefinedTerm
    123 N63d1066b64d04a69a3cccc692b828fc9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Female
    125 rdf:type schema:DefinedTerm
    126 N6b365d31a0b5410abe8582cc1fe18aa8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Adult
    128 rdf:type schema:DefinedTerm
    129 N70dd15e147ad4d41b56f18121d76dfcc rdf:first sg:person.0636567456.08
    130 rdf:rest Nadc0ef35f1814a38b7df02124664ec92
    131 N941bdc6d5c1343c2b9be43b218c8727c rdf:first sg:person.011363317125.44
    132 rdf:rest N50609b4f93ac4cf9be736865fdbe3d2f
    133 N94e703ba2e614a46826df22476f18281 rdf:first sg:person.016351016525.27
    134 rdf:rest Ne8168ccac3544dd9b0de9665f8af5403
    135 N9afacf80f4764fedaa7ea708536643a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Aged
    137 rdf:type schema:DefinedTerm
    138 N9fa39374a8394a378af3296cdbeea95d rdf:first sg:person.01031317430.81
    139 rdf:rest N166f41eaa5244ce5b28ab85eac1eac9c
    140 Na6e3c84d49ca4370b332fe9533668a97 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Neuroendocrine Tumors
    142 rdf:type schema:DefinedTerm
    143 Na7d772233a164896bacb000edae8ed1b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Positron Emission Tomography Computed Tomography
    145 rdf:type schema:DefinedTerm
    146 Na7fe64edd2034469a0c5293a7a020b7c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Octreotide
    148 rdf:type schema:DefinedTerm
    149 Naacf33d221874b71bf234c2c8bcff6d8 schema:volumeNumber 11
    150 rdf:type schema:PublicationVolume
    151 Nadc0ef35f1814a38b7df02124664ec92 rdf:first sg:person.01004714143.39
    152 rdf:rest N132df71a968e45fd9ff48d6d7c3108fe
    153 Nb407dd83ad9249a7b7e8e6054837cda7 schema:name Springer Nature - SN SciGraph project
    154 rdf:type schema:Organization
    155 Nbafd4c432c1642d4ad5a62dbb2638b6a rdf:first sg:person.01310147073.34
    156 rdf:rest rdf:nil
    157 Nc48c4c9efa6b4e3e9c34f126d1ae3cf9 schema:name doi
    158 schema:value 10.1038/s41598-021-83965-9
    159 rdf:type schema:PropertyValue
    160 Nd00236bd42504b84b5e2c900c199a72e schema:name pubmed_id
    161 schema:value 33649421
    162 rdf:type schema:PropertyValue
    163 Ne8168ccac3544dd9b0de9665f8af5403 rdf:first sg:person.01021766527.49
    164 rdf:rest N9fa39374a8394a378af3296cdbeea95d
    165 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    166 schema:name Medical and Health Sciences
    167 rdf:type schema:DefinedTerm
    168 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    169 schema:name Clinical Sciences
    170 rdf:type schema:DefinedTerm
    171 sg:journal.1045337 schema:issn 2045-2322
    172 schema:name Scientific Reports
    173 schema:publisher Springer Nature
    174 rdf:type schema:Periodical
    175 sg:person.01004714143.39 schema:affiliation grid-institutes:grid.411766.3
    176 schema:familyName Metges
    177 schema:givenName Jean Philippe
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004714143.39
    179 rdf:type schema:Person
    180 sg:person.01021766527.49 schema:affiliation grid-institutes:grid.411766.3
    181 schema:familyName Salaun
    182 schema:givenName Pierre-Yves
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021766527.49
    184 rdf:type schema:Person
    185 sg:person.01031317430.81 schema:affiliation grid-institutes:grid.411766.3
    186 schema:familyName Kerlan
    187 schema:givenName Véronique
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031317430.81
    189 rdf:type schema:Person
    190 sg:person.011363317125.44 schema:affiliation grid-institutes:grid.411766.3
    191 schema:familyName Amrane
    192 schema:givenName Karim
    193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011363317125.44
    194 rdf:type schema:Person
    195 sg:person.01144704141.74 schema:affiliation grid-institutes:grid.411766.3
    196 schema:familyName Thuillier
    197 schema:givenName Philippe
    198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144704141.74
    199 rdf:type schema:Person
    200 sg:person.01206441206.87 schema:affiliation grid-institutes:grid.411766.3
    201 schema:familyName Schick
    202 schema:givenName Ulrike
    203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206441206.87
    204 rdf:type schema:Person
    205 sg:person.01310147073.34 schema:affiliation grid-institutes:grid.411766.3
    206 schema:familyName Abgral
    207 schema:givenName Ronan
    208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310147073.34
    209 rdf:type schema:Person
    210 sg:person.015174542517.33 schema:affiliation grid-institutes:grid.411766.3
    211 schema:familyName Le Pennec
    212 schema:givenName Romain
    213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015174542517.33
    214 rdf:type schema:Person
    215 sg:person.015525025162.55 schema:affiliation grid-institutes:grid.5386.8
    216 schema:familyName Karakatsanis
    217 schema:givenName Nicolas
    218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015525025162.55
    219 rdf:type schema:Person
    220 sg:person.016351016525.27 schema:affiliation grid-institutes:grid.411766.3
    221 schema:familyName Hennebicq
    222 schema:givenName Simon
    223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016351016525.27
    224 rdf:type schema:Person
    225 sg:person.0636567456.08 schema:affiliation grid-institutes:grid.411766.3
    226 schema:familyName Bourhis
    227 schema:givenName David
    228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636567456.08
    229 rdf:type schema:Person
    230 sg:person.07567241445.72 schema:affiliation grid-institutes:grid.411766.3
    231 schema:familyName Blanc-Beguin
    232 schema:givenName Frédérique
    233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07567241445.72
    234 rdf:type schema:Person
    235 sg:pub.10.1007/bf00181765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016946247
    236 https://doi.org/10.1007/bf00181765
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1007/s00117-009-1972-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021355523
    239 https://doi.org/10.1007/s00117-009-1972-2
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1007/s00259-006-0110-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029239080
    242 https://doi.org/10.1007/s00259-006-0110-x
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1007/s00259-011-1937-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025979788
    245 https://doi.org/10.1007/s00259-011-1937-3
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1007/s00259-018-4153-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107306333
    248 https://doi.org/10.1007/s00259-018-4153-6
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1007/s11307-014-0795-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029679413
    251 https://doi.org/10.1007/s11307-014-0795-3
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1007/s11307-019-01328-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112305565
    254 https://doi.org/10.1007/s11307-019-01328-3
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1186/s40644-018-0136-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1100590847
    257 https://doi.org/10.1186/s40644-018-0136-x
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.3275/8102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078475253
    260 https://doi.org/10.3275/8102
    261 rdf:type schema:CreativeWork
    262 grid-institutes:grid.411766.3 schema:alternateName Department of Nuclear Medicine, University Hospital of Brest, Brest, France
    263 Department of Oncology, University Hospital of Brest, Brest, France
    264 Department of Radiotherapy, University Hospital of Brest, Brest, France
    265 EA GETBO 3878, University Hospital of Brest, Brest, France
    266 schema:name Department of Endocrinology, University Hospital of Brest, Boulevard Tanguy Prigent, 29609, Brest cedex, France
    267 Department of Nuclear Medicine, University Hospital of Brest, Brest, France
    268 Department of Oncology, University Hospital of Brest, Brest, France
    269 Department of Radiotherapy, University Hospital of Brest, Brest, France
    270 EA GETBO 3878, University Hospital of Brest, Brest, France
    271 rdf:type schema:Organization
    272 grid-institutes:grid.5386.8 schema:alternateName Department of Radiology, Weil Cornell Medical College of Cornell University, New York, NY, USA
    273 schema:name Department of Radiology, Weil Cornell Medical College of Cornell University, New York, NY, USA
    274 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...