Explainable AI reveals changes in skin microbiome composition linked to phenotypic differences View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-02-25

AUTHORS

Anna Paola Carrieri, Niina Haiminen, Sean Maudsley-Barton, Laura-Jayne Gardiner, Barry Murphy, Andrew E. Mayes, Sarah Paterson, Sally Grimshaw, Martyn Winn, Cameron Shand, Panagiotis Hadjidoukas, Will P. M. Rowe, Stacy Hawkins, Ashley MacGuire-Flanagan, Jane Tazzioli, John G. Kenny, Laxmi Parida, Michael Hoptroff, Edward O. Pyzer-Knapp

ABSTRACT

Alterations in the human microbiome have been observed in a variety of conditions such as asthma, gingivitis, dermatitis and cancer, and much remains to be learned about the links between the microbiome and human health. The fusion of artificial intelligence with rich microbiome datasets can offer an improved understanding of the microbiome’s role in human health. To gain actionable insights it is essential to consider both the predictive power and the transparency of the models by providing explanations for the predictions. We combine the collection of leg skin microbiome samples from two healthy cohorts of women with the application of an explainable artificial intelligence (EAI) approach that provides accurate predictions of phenotypes with explanations. The explanations are expressed in terms of variations in the relative abundance of key microbes that drive the predictions. We predict skin hydration, subject's age, pre/post-menopausal status and smoking status from the leg skin microbiome. The changes in microbial composition linked to skin hydration can accelerate the development of personalized treatments for healthy skin, while those associated with age may offer insights into the skin aging process. The leg microbiome signatures associated with smoking and menopausal status are consistent with previous findings from oral/respiratory tract microbiomes and vaginal/gut microbiomes respectively. This suggests that easily accessible microbiome samples could be used to investigate health-related phenotypes, offering potential for non-invasive diagnosis and condition monitoring. Our EAI approach sets the stage for new work focused on understanding the complex relationships between microbial communities and phenotypes. Our approach can be applied to predict any condition from microbiome samples and has the potential to accelerate the development of microbiome-based personalized therapeutics and non-invasive diagnostics. More... »

PAGES

4565

References to SciGraph publications

  • 2013-09-10. Microbiomic Signatures of Psoriasis: Feasibility and Methodology Comparison in SCIENTIFIC REPORTS
  • 2019-05-14. Skin microbiome relieves an itch in NATURE REVIEWS MICROBIOLOGY
  • 2018-12-14. Effects of smoking on the lower respiratory tract microbiome in mice in RESPIRATORY RESEARCH
  • 2012-06-13. Structure, function and diversity of the healthy human microbiome in NATURE
  • 2020-05-24. Mentholation triggers brand-specific shifts in the bacterial microbiota of commercial cigarette products in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2003-06. Skin Aging and Menopause in AMERICAN JOURNAL OF CLINICAL DERMATOLOGY
  • 2013-05-29. Gut metagenome in European women with normal, impaired and diabetic glucose control in NATURE
  • 2016-07-11. Whole metagenome profiling reveals skin microbiome-dependent susceptibility to atopic dermatitis flare in NATURE MICROBIOLOGY
  • 2018-11-21. Skin microbiota’s community effort in NATURE
  • 2020-01-17. From local explanations to global understanding with explainable AI for trees in NATURE MACHINE INTELLIGENCE
  • 2011-03-16. The skin microbiome in NATURE REVIEWS MICROBIOLOGY
  • 2014-06-01. Cohabitation—relationships of corynebacteria and staphylococci on human skin in FOLIA MICROBIOLOGICA
  • 2019-09-02. MITRE: inferring features from microbiota time-series data linked to host status in GENOME BIOLOGY
  • 2010-04-11. QIIME allows analysis of high-throughput community sequencing data in NATURE METHODS
  • 2019-11-14. Segregation of age-related skin microbiome characteristics by functionality in SCIENTIFIC REPORTS
  • 2018-01-15. The human skin microbiome in NATURE REVIEWS MICROBIOLOGY
  • 2017-09-05. Aging-related changes in the diversity of women’s skin microbiomes associated with oral bacteria in SCIENTIFIC REPORTS
  • 2012-02-14. PANDAseq: paired-end assembler for illumina sequences in BMC BIOINFORMATICS
  • 2016-10-27. Sebum and Hydration Levels in Specific Regions of Human Face Significantly Predict the Nature and Diversity of Facial Skin Microbiome in SCIENTIFIC REPORTS
  • 2014-06-04. Persistent gut microbiota immaturity in malnourished Bangladeshi children in NATURE
  • 2019-06-12. The impact of skin care products on skin chemistry and microbiome dynamics in BMC BIOLOGY
  • 2016-02-19. Tobacco Smoke and Skin Aging in TEXTBOOK OF AGING SKIN
  • 2017-06-14. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics in NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY
  • 2019-03-16. Streaming histogram sketching for rapid microbiome analytics in MICROBIOME
  • 2014-10-01. Biogeography and individuality shape function in the human skin metagenome in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-021-83922-6

    DOI

    http://dx.doi.org/10.1038/s41598-021-83922-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1135719336

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/33633172


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Public Health and Health Services", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Artificial Intelligence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biodiversity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Data Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Deep Learning", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Menopause", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metagenome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metagenomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microbiota", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Skin", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Smokers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Young Adult", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "The Hartree Centre, Sci-Tech Daresbury, IBM Research, WA4 4AD, Daresbury, UK", 
              "id": "http://www.grid.ac/institutes/grid.498189.5", 
              "name": [
                "The Hartree Centre, Sci-Tech Daresbury, IBM Research, WA4 4AD, Daresbury, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Carrieri", 
            "givenName": "Anna Paola", 
            "id": "sg:person.014252047761.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014252047761.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "T.J. Watson Research Center, IBM Research, 10598, Yorktown Heights, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.481554.9", 
              "name": [
                "T.J. Watson Research Center, IBM Research, 10598, Yorktown Heights, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Haiminen", 
            "givenName": "Niina", 
            "id": "sg:person.0746114007.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746114007.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computing and Mathematics, Manchester Metropolitan University (MUU), M15 6BH, Manchester, UK", 
              "id": "http://www.grid.ac/institutes/grid.25627.34", 
              "name": [
                "The Hartree Centre, Sci-Tech Daresbury, IBM Research, WA4 4AD, Daresbury, UK", 
                "Department of Computing and Mathematics, Manchester Metropolitan University (MUU), M15 6BH, Manchester, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Maudsley-Barton", 
            "givenName": "Sean", 
            "id": "sg:person.015534765232.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015534765232.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The Hartree Centre, Sci-Tech Daresbury, IBM Research, WA4 4AD, Daresbury, UK", 
              "id": "http://www.grid.ac/institutes/grid.498189.5", 
              "name": [
                "The Hartree Centre, Sci-Tech Daresbury, IBM Research, WA4 4AD, Daresbury, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gardiner", 
            "givenName": "Laura-Jayne", 
            "id": "sg:person.0604125436.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604125436.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Unilever Research & Development, CH63 3JW, Port Sunlight, UK", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Unilever Research & Development, CH63 3JW, Port Sunlight, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Murphy", 
            "givenName": "Barry", 
            "id": "sg:person.014463406027.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014463406027.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Unilever Research and Development, MK44 1LQ, Sharnbrook, UK", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Unilever Research and Development, MK44 1LQ, Sharnbrook, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mayes", 
            "givenName": "Andrew E.", 
            "id": "sg:person.01214707210.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214707210.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Unilever Research & Development, CH63 3JW, Port Sunlight, UK", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Unilever Research & Development, CH63 3JW, Port Sunlight, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Paterson", 
            "givenName": "Sarah", 
            "id": "sg:person.01256540642.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256540642.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Unilever Research & Development, CH63 3JW, Port Sunlight, UK", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Unilever Research & Development, CH63 3JW, Port Sunlight, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Grimshaw", 
            "givenName": "Sally", 
            "id": "sg:person.01017412654.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017412654.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Scientific Computing Department, STFC Daresbury Lab, WA4 4AD, Daresbury, UK", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Scientific Computing Department, STFC Daresbury Lab, WA4 4AD, Daresbury, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Winn", 
            "givenName": "Martyn", 
            "id": "sg:person.01052630027.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052630027.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science, University of Manchester (UoM), M13 9LP, Manchester, UK", 
              "id": "http://www.grid.ac/institutes/grid.5379.8", 
              "name": [
                "The Hartree Centre, Sci-Tech Daresbury, IBM Research, WA4 4AD, Daresbury, UK", 
                "Department of Computer Science, University of Manchester (UoM), M13 9LP, Manchester, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shand", 
            "givenName": "Cameron", 
            "id": "sg:person.014521621626.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014521621626.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "IBM Research - Zurich, Saumerstrasse 4, 8803, Rueschlikon, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.410387.9", 
              "name": [
                "IBM Research - Zurich, Saumerstrasse 4, 8803, Rueschlikon, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hadjidoukas", 
            "givenName": "Panagiotis", 
            "id": "sg:person.010410204010.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010410204010.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Birmingham, Birmingham, UK", 
              "id": "http://www.grid.ac/institutes/grid.6572.6", 
              "name": [
                "University of Birmingham, Birmingham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rowe", 
            "givenName": "Will P. M.", 
            "id": "sg:person.0701222501.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701222501.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Unilever Research & Development, 06611, Trumbull, CT, USA", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Unilever Research & Development, 06611, Trumbull, CT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hawkins", 
            "givenName": "Stacy", 
            "id": "sg:person.016525504263.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016525504263.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Unilever Research & Development, 06611, Trumbull, CT, USA", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Unilever Research & Development, 06611, Trumbull, CT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "MacGuire-Flanagan", 
            "givenName": "Ashley", 
            "id": "sg:person.010620013463.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010620013463.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Unilever Research & Development, 06611, Trumbull, CT, USA", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Unilever Research & Development, 06611, Trumbull, CT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tazzioli", 
            "givenName": "Jane", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Integrative Biology, The University of Liverpool, The Bioscience Building, L697ZB, Liverpool, UK", 
              "id": "http://www.grid.ac/institutes/grid.10025.36", 
              "name": [
                "Institute of Integrative Biology, The University of Liverpool, The Bioscience Building, L697ZB, Liverpool, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kenny", 
            "givenName": "John G.", 
            "id": "sg:person.01116205060.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116205060.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "T.J. Watson Research Center, IBM Research, 10598, Yorktown Heights, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.481554.9", 
              "name": [
                "T.J. Watson Research Center, IBM Research, 10598, Yorktown Heights, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Parida", 
            "givenName": "Laxmi", 
            "id": "sg:person.01336557015.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336557015.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Unilever Research & Development, CH63 3JW, Port Sunlight, UK", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Unilever Research & Development, CH63 3JW, Port Sunlight, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hoptroff", 
            "givenName": "Michael", 
            "id": "sg:person.014740206774.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014740206774.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The Hartree Centre, Sci-Tech Daresbury, IBM Research, WA4 4AD, Daresbury, UK", 
              "id": "http://www.grid.ac/institutes/grid.498189.5", 
              "name": [
                "The Hartree Centre, Sci-Tech Daresbury, IBM Research, WA4 4AD, Daresbury, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pyzer-Knapp", 
            "givenName": "Edward O.", 
            "id": "sg:person.016137033055.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016137033055.04"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nrmicro.2017.157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100403869", 
              "https://doi.org/10.1038/nrmicro.2017.157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-019-1788-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120775260", 
              "https://doi.org/10.1186/s13059-019-1788-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40168-019-0653-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112831801", 
              "https://doi.org/10.1186/s40168-019-0653-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002791386", 
              "https://doi.org/10.1038/nature12198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41579-019-0217-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1114225775", 
              "https://doi.org/10.1038/s41579-019-0217-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.f.303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009032055", 
              "https://doi.org/10.1038/nmeth.f.303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-020-10681-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1127866895", 
              "https://doi.org/10.1007/s00253-020-10681-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-13-31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047017534", 
              "https://doi.org/10.1186/1471-2105-13-31"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/d41586-018-07432-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110065905", 
              "https://doi.org/10.1038/d41586-018-07432-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro2537", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032159307", 
              "https://doi.org/10.1038/nrmicro2537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmicrobiol.2016.106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010407548", 
              "https://doi.org/10.1038/nmicrobiol.2016.106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-019-53266-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122561293", 
              "https://doi.org/10.1038/s41598-019-53266-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep02620", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043515512", 
              "https://doi.org/10.1038/srep02620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12931-018-0959-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110648773", 
              "https://doi.org/10.1186/s12931-018-0959-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052356500", 
              "https://doi.org/10.1038/nature13421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s42256-019-0138-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124145969", 
              "https://doi.org/10.1038/s42256-019-0138-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13786", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022632622", 
              "https://doi.org/10.1038/nature13786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrgastro.2017.75", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086020795", 
              "https://doi.org/10.1038/nrgastro.2017.75"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-10834-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091449585", 
              "https://doi.org/10.1038/s41598-017-10834-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-27814-3_46-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050241959", 
              "https://doi.org/10.1007/978-3-642-27814-3_46-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007740093", 
              "https://doi.org/10.1038/nature11234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.2165/00128071-200304060-00001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004679114", 
              "https://doi.org/10.2165/00128071-200304060-00001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12915-019-0660-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117077309", 
              "https://doi.org/10.1186/s12915-019-0660-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep36062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023503556", 
              "https://doi.org/10.1038/srep36062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12223-014-0326-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015318522", 
              "https://doi.org/10.1007/s12223-014-0326-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-02-25", 
        "datePublishedReg": "2021-02-25", 
        "description": "Alterations in the human microbiome have been observed in a variety of conditions such as asthma, gingivitis, dermatitis and cancer, and much remains to be learned about the links between the microbiome and human health. The fusion of artificial intelligence with rich microbiome datasets can offer an improved understanding of the microbiome\u2019s role in human health. To gain actionable insights it is essential to consider both the predictive power and the transparency of the models by providing explanations for the predictions. We combine the collection of leg skin microbiome samples from two healthy cohorts of women with the application of an explainable artificial intelligence (EAI) approach that provides accurate predictions of phenotypes with explanations. The explanations are expressed in terms of variations in the relative abundance of key microbes that drive the predictions. We predict skin hydration, subject's age, pre/post-menopausal status and smoking status from the leg skin microbiome. The changes in microbial composition linked to skin hydration can accelerate the development of personalized treatments for healthy skin, while those associated with age may offer insights into the skin aging process. The leg microbiome signatures associated with smoking and menopausal status are consistent with previous findings from oral/respiratory tract microbiomes and vaginal/gut microbiomes respectively. This suggests that easily accessible microbiome samples could be used to investigate health-related phenotypes, offering potential for non-invasive diagnosis and condition monitoring. Our EAI approach sets the stage for new work focused on understanding the complex relationships between microbial communities and phenotypes. Our approach can be applied to predict any condition from microbiome samples and has the potential to accelerate the development of microbiome-based personalized therapeutics and non-invasive diagnostics.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-021-83922-6", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "keywords": [
          "respiratory tract microbiome", 
          "post-menopausal status", 
          "skin hydration", 
          "skin microbiome samples", 
          "non-invasive diagnosis", 
          "menopausal status", 
          "smoking status", 
          "healthy cohort", 
          "microbiome signatures", 
          "microbiome's role", 
          "skin microbiome composition", 
          "healthy skin", 
          "gut microbiome", 
          "subject age", 
          "non-invasive diagnostics", 
          "personalized therapeutics", 
          "skin microbiome", 
          "health-related phenotypes", 
          "microbiome composition", 
          "age", 
          "microbiome samples", 
          "human microbiome", 
          "microbiome", 
          "skin", 
          "phenotype", 
          "status", 
          "human health", 
          "microbial composition", 
          "health", 
          "previous findings", 
          "gingivitis", 
          "asthma", 
          "smoking", 
          "dermatitis", 
          "cohort", 
          "variety of conditions", 
          "cancer", 
          "diagnosis", 
          "women", 
          "phenotypic differences", 
          "treatment", 
          "therapeutics", 
          "alterations", 
          "role", 
          "predictive power", 
          "changes", 
          "samples", 
          "findings", 
          "differences", 
          "development", 
          "complex relationship", 
          "key microbes", 
          "potential", 
          "monitoring", 
          "diagnostics", 
          "EAI approach", 
          "stage", 
          "fusion", 
          "relative abundance", 
          "relationship", 
          "insights", 
          "conditions", 
          "microbiome datasets", 
          "explainable artificial intelligence approach", 
          "hydration", 
          "explanation", 
          "microbes", 
          "approach", 
          "variety", 
          "understanding", 
          "collection", 
          "AI", 
          "link", 
          "community", 
          "signatures", 
          "model", 
          "prediction", 
          "composition", 
          "variation", 
          "terms", 
          "artificial intelligence approach", 
          "accurate prediction", 
          "abundance", 
          "microbial communities", 
          "process", 
          "actionable insights", 
          "artificial intelligence", 
          "new work", 
          "work", 
          "dataset", 
          "applications", 
          "intelligence", 
          "terms of variations", 
          "intelligence approach", 
          "power", 
          "transparency", 
          "Explainable AI", 
          "condition monitoring"
        ], 
        "name": "Explainable AI reveals changes in skin microbiome composition linked to phenotypic differences", 
        "pagination": "4565", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1135719336"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-021-83922-6"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "33633172"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-021-83922-6", 
          "https://app.dimensions.ai/details/publication/pub.1135719336"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_923.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-021-83922-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-83922-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-83922-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-83922-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-83922-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    492 TRIPLES      21 PREDICATES      168 URIs      135 LITERALS      27 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-021-83922-6 schema:about N02c455cfd82b4094aad55b71371267a7
    2 N09bc02e5a9d7438090d6d29331013d7e
    3 N13734dac015b4131ac71aece1281cff0
    4 N174d3af859a0489dadc89e5c5a518131
    5 N3363d516764e4afea84329d8a6851287
    6 N4188c0b5ef944ea4a4424b61722ad247
    7 N463ebe772c0445fb87f56a2432099b77
    8 N516d07d0356747ba96ce44881bd094db
    9 N52ecc966073a4dadb57b9be83671226e
    10 N5e70c870915c4eaab879622e2936cfda
    11 N5e83dd5de2a542cf9de3ddb83a9fa56f
    12 N67193bd5778e46dd8d5bc55d5e9c2808
    13 N68719a59397c4f72a663ecfd62d60f7f
    14 N7c538faebaac40939ff48a899be85932
    15 N8aff5650a3ea4ce8a8a281088d4c0214
    16 N93ad7ba79da546a4a23c166f6e2c33ab
    17 Nab4cf5810fae4eff910901712a93965e
    18 Nd8ff134009aa466bb56379b5fcd14c7c
    19 Ndcfa386f24044573a073d7607b82415b
    20 Nfe5cea214cd5421b897cea7bb9e46784
    21 anzsrc-for:11
    22 anzsrc-for:1117
    23 schema:author Nc87e4b5711784718ab6f5f70c575683a
    24 schema:citation sg:pub.10.1007/978-3-642-27814-3_46-2
    25 sg:pub.10.1007/s00253-020-10681-1
    26 sg:pub.10.1007/s12223-014-0326-2
    27 sg:pub.10.1038/d41586-018-07432-8
    28 sg:pub.10.1038/nature11234
    29 sg:pub.10.1038/nature12198
    30 sg:pub.10.1038/nature13421
    31 sg:pub.10.1038/nature13786
    32 sg:pub.10.1038/nmeth.f.303
    33 sg:pub.10.1038/nmicrobiol.2016.106
    34 sg:pub.10.1038/nrgastro.2017.75
    35 sg:pub.10.1038/nrmicro.2017.157
    36 sg:pub.10.1038/nrmicro2537
    37 sg:pub.10.1038/s41579-019-0217-2
    38 sg:pub.10.1038/s41598-017-10834-9
    39 sg:pub.10.1038/s41598-019-53266-3
    40 sg:pub.10.1038/s42256-019-0138-9
    41 sg:pub.10.1038/srep02620
    42 sg:pub.10.1038/srep36062
    43 sg:pub.10.1186/1471-2105-13-31
    44 sg:pub.10.1186/s12915-019-0660-6
    45 sg:pub.10.1186/s12931-018-0959-9
    46 sg:pub.10.1186/s13059-019-1788-y
    47 sg:pub.10.1186/s40168-019-0653-2
    48 sg:pub.10.2165/00128071-200304060-00001
    49 schema:datePublished 2021-02-25
    50 schema:datePublishedReg 2021-02-25
    51 schema:description Alterations in the human microbiome have been observed in a variety of conditions such as asthma, gingivitis, dermatitis and cancer, and much remains to be learned about the links between the microbiome and human health. The fusion of artificial intelligence with rich microbiome datasets can offer an improved understanding of the microbiome’s role in human health. To gain actionable insights it is essential to consider both the predictive power and the transparency of the models by providing explanations for the predictions. We combine the collection of leg skin microbiome samples from two healthy cohorts of women with the application of an explainable artificial intelligence (EAI) approach that provides accurate predictions of phenotypes with explanations. The explanations are expressed in terms of variations in the relative abundance of key microbes that drive the predictions. We predict skin hydration, subject's age, pre/post-menopausal status and smoking status from the leg skin microbiome. The changes in microbial composition linked to skin hydration can accelerate the development of personalized treatments for healthy skin, while those associated with age may offer insights into the skin aging process. The leg microbiome signatures associated with smoking and menopausal status are consistent with previous findings from oral/respiratory tract microbiomes and vaginal/gut microbiomes respectively. This suggests that easily accessible microbiome samples could be used to investigate health-related phenotypes, offering potential for non-invasive diagnosis and condition monitoring. Our EAI approach sets the stage for new work focused on understanding the complex relationships between microbial communities and phenotypes. Our approach can be applied to predict any condition from microbiome samples and has the potential to accelerate the development of microbiome-based personalized therapeutics and non-invasive diagnostics.
    52 schema:genre article
    53 schema:isAccessibleForFree true
    54 schema:isPartOf Nd4fd069100f74f2eaee285f100ef4f01
    55 Ndacac1fd6b3f410bb59668a6e3fdba97
    56 sg:journal.1045337
    57 schema:keywords AI
    58 EAI approach
    59 Explainable AI
    60 abundance
    61 accurate prediction
    62 actionable insights
    63 age
    64 alterations
    65 applications
    66 approach
    67 artificial intelligence
    68 artificial intelligence approach
    69 asthma
    70 cancer
    71 changes
    72 cohort
    73 collection
    74 community
    75 complex relationship
    76 composition
    77 condition monitoring
    78 conditions
    79 dataset
    80 dermatitis
    81 development
    82 diagnosis
    83 diagnostics
    84 differences
    85 explainable artificial intelligence approach
    86 explanation
    87 findings
    88 fusion
    89 gingivitis
    90 gut microbiome
    91 health
    92 health-related phenotypes
    93 healthy cohort
    94 healthy skin
    95 human health
    96 human microbiome
    97 hydration
    98 insights
    99 intelligence
    100 intelligence approach
    101 key microbes
    102 link
    103 menopausal status
    104 microbes
    105 microbial communities
    106 microbial composition
    107 microbiome
    108 microbiome composition
    109 microbiome datasets
    110 microbiome samples
    111 microbiome signatures
    112 microbiome's role
    113 model
    114 monitoring
    115 new work
    116 non-invasive diagnosis
    117 non-invasive diagnostics
    118 personalized therapeutics
    119 phenotype
    120 phenotypic differences
    121 post-menopausal status
    122 potential
    123 power
    124 prediction
    125 predictive power
    126 previous findings
    127 process
    128 relationship
    129 relative abundance
    130 respiratory tract microbiome
    131 role
    132 samples
    133 signatures
    134 skin
    135 skin hydration
    136 skin microbiome
    137 skin microbiome composition
    138 skin microbiome samples
    139 smoking
    140 smoking status
    141 stage
    142 status
    143 subject age
    144 terms
    145 terms of variations
    146 therapeutics
    147 transparency
    148 treatment
    149 understanding
    150 variation
    151 variety
    152 variety of conditions
    153 women
    154 work
    155 schema:name Explainable AI reveals changes in skin microbiome composition linked to phenotypic differences
    156 schema:pagination 4565
    157 schema:productId N2c25b0dfc608483f8b6f022e8f5fa98f
    158 N5f8137f5a85e4b18b531106ee428a16a
    159 N910bdc8de8af4c98bc355aa1f658fe17
    160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135719336
    161 https://doi.org/10.1038/s41598-021-83922-6
    162 schema:sdDatePublished 2022-09-02T16:07
    163 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    164 schema:sdPublisher N1cb3a3f8c239458ba010a143260ab1ce
    165 schema:url https://doi.org/10.1038/s41598-021-83922-6
    166 sgo:license sg:explorer/license/
    167 sgo:sdDataset articles
    168 rdf:type schema:ScholarlyArticle
    169 N02c455cfd82b4094aad55b71371267a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Computational Biology
    171 rdf:type schema:DefinedTerm
    172 N0432ea3ddc134cb79e7dcb7d9be482d3 rdf:first sg:person.01116205060.31
    173 rdf:rest Ne802233fa5514e8b871c1ed421845a28
    174 N09bc02e5a9d7438090d6d29331013d7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Microbiota
    176 rdf:type schema:DefinedTerm
    177 N0b12c42d1383496281eeb2ac3927c894 rdf:first sg:person.0604125436.47
    178 rdf:rest N271d68b0f68f48de88a759d64714e9c5
    179 N13734dac015b4131ac71aece1281cff0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Smokers
    181 rdf:type schema:DefinedTerm
    182 N174d3af859a0489dadc89e5c5a518131 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Male
    184 rdf:type schema:DefinedTerm
    185 N1cb3a3f8c239458ba010a143260ab1ce schema:name Springer Nature - SN SciGraph project
    186 rdf:type schema:Organization
    187 N271d68b0f68f48de88a759d64714e9c5 rdf:first sg:person.014463406027.12
    188 rdf:rest N958ff927ae0344e0bbdcea5e67fb6623
    189 N2c25b0dfc608483f8b6f022e8f5fa98f schema:name pubmed_id
    190 schema:value 33633172
    191 rdf:type schema:PropertyValue
    192 N2eb2d9833bff4993966591bb4af6f941 rdf:first sg:person.015534765232.52
    193 rdf:rest N0b12c42d1383496281eeb2ac3927c894
    194 N3363d516764e4afea84329d8a6851287 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    195 schema:name Artificial Intelligence
    196 rdf:type schema:DefinedTerm
    197 N3cd0089425e24c60967b15e9e4369b70 rdf:first sg:person.014521621626.76
    198 rdf:rest Ncfa976b683654c1ea029941870bebf9e
    199 N40aa887130994d50a1dee4f940ba0c1d rdf:first sg:person.0701222501.24
    200 rdf:rest N7de8b7183cf04ae1a184cbb6d8b1368d
    201 N4188c0b5ef944ea4a4424b61722ad247 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    202 schema:name Biodiversity
    203 rdf:type schema:DefinedTerm
    204 N463ebe772c0445fb87f56a2432099b77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    205 schema:name Skin
    206 rdf:type schema:DefinedTerm
    207 N4cf6c683473b4a2880f4870e45421e0f rdf:first sg:person.014740206774.12
    208 rdf:rest Ndf31cb88876d48d781f8df0087ad5a50
    209 N516d07d0356747ba96ce44881bd094db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    210 schema:name Metagenome
    211 rdf:type schema:DefinedTerm
    212 N52ecc966073a4dadb57b9be83671226e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    213 schema:name Data Analysis
    214 rdf:type schema:DefinedTerm
    215 N5373f294f1594585a2d9dfe8620713e8 schema:affiliation grid-institutes:None
    216 schema:familyName Tazzioli
    217 schema:givenName Jane
    218 rdf:type schema:Person
    219 N5ba9cfd32a8547f189e3f1756a079b8e rdf:first sg:person.01052630027.06
    220 rdf:rest N3cd0089425e24c60967b15e9e4369b70
    221 N5e70c870915c4eaab879622e2936cfda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    222 schema:name Aging
    223 rdf:type schema:DefinedTerm
    224 N5e83dd5de2a542cf9de3ddb83a9fa56f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    225 schema:name Young Adult
    226 rdf:type schema:DefinedTerm
    227 N5f8137f5a85e4b18b531106ee428a16a schema:name doi
    228 schema:value 10.1038/s41598-021-83922-6
    229 rdf:type schema:PropertyValue
    230 N67193bd5778e46dd8d5bc55d5e9c2808 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    231 schema:name Deep Learning
    232 rdf:type schema:DefinedTerm
    233 N68719a59397c4f72a663ecfd62d60f7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    234 schema:name Female
    235 rdf:type schema:DefinedTerm
    236 N7365b5e8313f497694b2b6b1186591dc rdf:first sg:person.01256540642.04
    237 rdf:rest Nea03de523265485db39929b2ce287f74
    238 N7c538faebaac40939ff48a899be85932 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    239 schema:name Adult
    240 rdf:type schema:DefinedTerm
    241 N7de8b7183cf04ae1a184cbb6d8b1368d rdf:first sg:person.016525504263.46
    242 rdf:rest Nc0975c974ec6408c947125f779234e90
    243 N8a6f1b3b96ea4934becb8d0fd741f2cb rdf:first sg:person.0746114007.76
    244 rdf:rest N2eb2d9833bff4993966591bb4af6f941
    245 N8aff5650a3ea4ce8a8a281088d4c0214 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    246 schema:name Humans
    247 rdf:type schema:DefinedTerm
    248 N910bdc8de8af4c98bc355aa1f658fe17 schema:name dimensions_id
    249 schema:value pub.1135719336
    250 rdf:type schema:PropertyValue
    251 N93ad7ba79da546a4a23c166f6e2c33ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    252 schema:name Phenotype
    253 rdf:type schema:DefinedTerm
    254 N958ff927ae0344e0bbdcea5e67fb6623 rdf:first sg:person.01214707210.81
    255 rdf:rest N7365b5e8313f497694b2b6b1186591dc
    256 Nab4cf5810fae4eff910901712a93965e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    257 schema:name Middle Aged
    258 rdf:type schema:DefinedTerm
    259 Nc0975c974ec6408c947125f779234e90 rdf:first sg:person.010620013463.18
    260 rdf:rest Nd9808a6a916a4f3588ad28d41613b9ea
    261 Nc87e4b5711784718ab6f5f70c575683a rdf:first sg:person.014252047761.02
    262 rdf:rest N8a6f1b3b96ea4934becb8d0fd741f2cb
    263 Ncfa976b683654c1ea029941870bebf9e rdf:first sg:person.010410204010.53
    264 rdf:rest N40aa887130994d50a1dee4f940ba0c1d
    265 Nd4fd069100f74f2eaee285f100ef4f01 schema:issueNumber 1
    266 rdf:type schema:PublicationIssue
    267 Nd8ff134009aa466bb56379b5fcd14c7c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    268 schema:name Metagenomics
    269 rdf:type schema:DefinedTerm
    270 Nd9808a6a916a4f3588ad28d41613b9ea rdf:first N5373f294f1594585a2d9dfe8620713e8
    271 rdf:rest N0432ea3ddc134cb79e7dcb7d9be482d3
    272 Ndacac1fd6b3f410bb59668a6e3fdba97 schema:volumeNumber 11
    273 rdf:type schema:PublicationVolume
    274 Ndcfa386f24044573a073d7607b82415b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    275 schema:name Aged
    276 rdf:type schema:DefinedTerm
    277 Ndf31cb88876d48d781f8df0087ad5a50 rdf:first sg:person.016137033055.04
    278 rdf:rest rdf:nil
    279 Ne802233fa5514e8b871c1ed421845a28 rdf:first sg:person.01336557015.68
    280 rdf:rest N4cf6c683473b4a2880f4870e45421e0f
    281 Nea03de523265485db39929b2ce287f74 rdf:first sg:person.01017412654.63
    282 rdf:rest N5ba9cfd32a8547f189e3f1756a079b8e
    283 Nfe5cea214cd5421b897cea7bb9e46784 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    284 schema:name Menopause
    285 rdf:type schema:DefinedTerm
    286 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    287 schema:name Medical and Health Sciences
    288 rdf:type schema:DefinedTerm
    289 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
    290 schema:name Public Health and Health Services
    291 rdf:type schema:DefinedTerm
    292 sg:journal.1045337 schema:issn 2045-2322
    293 schema:name Scientific Reports
    294 schema:publisher Springer Nature
    295 rdf:type schema:Periodical
    296 sg:person.01017412654.63 schema:affiliation grid-institutes:None
    297 schema:familyName Grimshaw
    298 schema:givenName Sally
    299 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017412654.63
    300 rdf:type schema:Person
    301 sg:person.010410204010.53 schema:affiliation grid-institutes:grid.410387.9
    302 schema:familyName Hadjidoukas
    303 schema:givenName Panagiotis
    304 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010410204010.53
    305 rdf:type schema:Person
    306 sg:person.01052630027.06 schema:affiliation grid-institutes:None
    307 schema:familyName Winn
    308 schema:givenName Martyn
    309 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052630027.06
    310 rdf:type schema:Person
    311 sg:person.010620013463.18 schema:affiliation grid-institutes:None
    312 schema:familyName MacGuire-Flanagan
    313 schema:givenName Ashley
    314 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010620013463.18
    315 rdf:type schema:Person
    316 sg:person.01116205060.31 schema:affiliation grid-institutes:grid.10025.36
    317 schema:familyName Kenny
    318 schema:givenName John G.
    319 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116205060.31
    320 rdf:type schema:Person
    321 sg:person.01214707210.81 schema:affiliation grid-institutes:None
    322 schema:familyName Mayes
    323 schema:givenName Andrew E.
    324 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214707210.81
    325 rdf:type schema:Person
    326 sg:person.01256540642.04 schema:affiliation grid-institutes:None
    327 schema:familyName Paterson
    328 schema:givenName Sarah
    329 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256540642.04
    330 rdf:type schema:Person
    331 sg:person.01336557015.68 schema:affiliation grid-institutes:grid.481554.9
    332 schema:familyName Parida
    333 schema:givenName Laxmi
    334 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336557015.68
    335 rdf:type schema:Person
    336 sg:person.014252047761.02 schema:affiliation grid-institutes:grid.498189.5
    337 schema:familyName Carrieri
    338 schema:givenName Anna Paola
    339 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014252047761.02
    340 rdf:type schema:Person
    341 sg:person.014463406027.12 schema:affiliation grid-institutes:None
    342 schema:familyName Murphy
    343 schema:givenName Barry
    344 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014463406027.12
    345 rdf:type schema:Person
    346 sg:person.014521621626.76 schema:affiliation grid-institutes:grid.5379.8
    347 schema:familyName Shand
    348 schema:givenName Cameron
    349 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014521621626.76
    350 rdf:type schema:Person
    351 sg:person.014740206774.12 schema:affiliation grid-institutes:None
    352 schema:familyName Hoptroff
    353 schema:givenName Michael
    354 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014740206774.12
    355 rdf:type schema:Person
    356 sg:person.015534765232.52 schema:affiliation grid-institutes:grid.25627.34
    357 schema:familyName Maudsley-Barton
    358 schema:givenName Sean
    359 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015534765232.52
    360 rdf:type schema:Person
    361 sg:person.016137033055.04 schema:affiliation grid-institutes:grid.498189.5
    362 schema:familyName Pyzer-Knapp
    363 schema:givenName Edward O.
    364 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016137033055.04
    365 rdf:type schema:Person
    366 sg:person.016525504263.46 schema:affiliation grid-institutes:None
    367 schema:familyName Hawkins
    368 schema:givenName Stacy
    369 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016525504263.46
    370 rdf:type schema:Person
    371 sg:person.0604125436.47 schema:affiliation grid-institutes:grid.498189.5
    372 schema:familyName Gardiner
    373 schema:givenName Laura-Jayne
    374 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604125436.47
    375 rdf:type schema:Person
    376 sg:person.0701222501.24 schema:affiliation grid-institutes:grid.6572.6
    377 schema:familyName Rowe
    378 schema:givenName Will P. M.
    379 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701222501.24
    380 rdf:type schema:Person
    381 sg:person.0746114007.76 schema:affiliation grid-institutes:grid.481554.9
    382 schema:familyName Haiminen
    383 schema:givenName Niina
    384 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746114007.76
    385 rdf:type schema:Person
    386 sg:pub.10.1007/978-3-642-27814-3_46-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050241959
    387 https://doi.org/10.1007/978-3-642-27814-3_46-2
    388 rdf:type schema:CreativeWork
    389 sg:pub.10.1007/s00253-020-10681-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127866895
    390 https://doi.org/10.1007/s00253-020-10681-1
    391 rdf:type schema:CreativeWork
    392 sg:pub.10.1007/s12223-014-0326-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015318522
    393 https://doi.org/10.1007/s12223-014-0326-2
    394 rdf:type schema:CreativeWork
    395 sg:pub.10.1038/d41586-018-07432-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110065905
    396 https://doi.org/10.1038/d41586-018-07432-8
    397 rdf:type schema:CreativeWork
    398 sg:pub.10.1038/nature11234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007740093
    399 https://doi.org/10.1038/nature11234
    400 rdf:type schema:CreativeWork
    401 sg:pub.10.1038/nature12198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002791386
    402 https://doi.org/10.1038/nature12198
    403 rdf:type schema:CreativeWork
    404 sg:pub.10.1038/nature13421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052356500
    405 https://doi.org/10.1038/nature13421
    406 rdf:type schema:CreativeWork
    407 sg:pub.10.1038/nature13786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022632622
    408 https://doi.org/10.1038/nature13786
    409 rdf:type schema:CreativeWork
    410 sg:pub.10.1038/nmeth.f.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009032055
    411 https://doi.org/10.1038/nmeth.f.303
    412 rdf:type schema:CreativeWork
    413 sg:pub.10.1038/nmicrobiol.2016.106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010407548
    414 https://doi.org/10.1038/nmicrobiol.2016.106
    415 rdf:type schema:CreativeWork
    416 sg:pub.10.1038/nrgastro.2017.75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086020795
    417 https://doi.org/10.1038/nrgastro.2017.75
    418 rdf:type schema:CreativeWork
    419 sg:pub.10.1038/nrmicro.2017.157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100403869
    420 https://doi.org/10.1038/nrmicro.2017.157
    421 rdf:type schema:CreativeWork
    422 sg:pub.10.1038/nrmicro2537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032159307
    423 https://doi.org/10.1038/nrmicro2537
    424 rdf:type schema:CreativeWork
    425 sg:pub.10.1038/s41579-019-0217-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1114225775
    426 https://doi.org/10.1038/s41579-019-0217-2
    427 rdf:type schema:CreativeWork
    428 sg:pub.10.1038/s41598-017-10834-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091449585
    429 https://doi.org/10.1038/s41598-017-10834-9
    430 rdf:type schema:CreativeWork
    431 sg:pub.10.1038/s41598-019-53266-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122561293
    432 https://doi.org/10.1038/s41598-019-53266-3
    433 rdf:type schema:CreativeWork
    434 sg:pub.10.1038/s42256-019-0138-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124145969
    435 https://doi.org/10.1038/s42256-019-0138-9
    436 rdf:type schema:CreativeWork
    437 sg:pub.10.1038/srep02620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043515512
    438 https://doi.org/10.1038/srep02620
    439 rdf:type schema:CreativeWork
    440 sg:pub.10.1038/srep36062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023503556
    441 https://doi.org/10.1038/srep36062
    442 rdf:type schema:CreativeWork
    443 sg:pub.10.1186/1471-2105-13-31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047017534
    444 https://doi.org/10.1186/1471-2105-13-31
    445 rdf:type schema:CreativeWork
    446 sg:pub.10.1186/s12915-019-0660-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117077309
    447 https://doi.org/10.1186/s12915-019-0660-6
    448 rdf:type schema:CreativeWork
    449 sg:pub.10.1186/s12931-018-0959-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110648773
    450 https://doi.org/10.1186/s12931-018-0959-9
    451 rdf:type schema:CreativeWork
    452 sg:pub.10.1186/s13059-019-1788-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1120775260
    453 https://doi.org/10.1186/s13059-019-1788-y
    454 rdf:type schema:CreativeWork
    455 sg:pub.10.1186/s40168-019-0653-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112831801
    456 https://doi.org/10.1186/s40168-019-0653-2
    457 rdf:type schema:CreativeWork
    458 sg:pub.10.2165/00128071-200304060-00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004679114
    459 https://doi.org/10.2165/00128071-200304060-00001
    460 rdf:type schema:CreativeWork
    461 grid-institutes:None schema:alternateName Scientific Computing Department, STFC Daresbury Lab, WA4 4AD, Daresbury, UK
    462 Unilever Research & Development, 06611, Trumbull, CT, USA
    463 Unilever Research & Development, CH63 3JW, Port Sunlight, UK
    464 Unilever Research and Development, MK44 1LQ, Sharnbrook, UK
    465 schema:name Scientific Computing Department, STFC Daresbury Lab, WA4 4AD, Daresbury, UK
    466 Unilever Research & Development, 06611, Trumbull, CT, USA
    467 Unilever Research & Development, CH63 3JW, Port Sunlight, UK
    468 Unilever Research and Development, MK44 1LQ, Sharnbrook, UK
    469 rdf:type schema:Organization
    470 grid-institutes:grid.10025.36 schema:alternateName Institute of Integrative Biology, The University of Liverpool, The Bioscience Building, L697ZB, Liverpool, UK
    471 schema:name Institute of Integrative Biology, The University of Liverpool, The Bioscience Building, L697ZB, Liverpool, UK
    472 rdf:type schema:Organization
    473 grid-institutes:grid.25627.34 schema:alternateName Department of Computing and Mathematics, Manchester Metropolitan University (MUU), M15 6BH, Manchester, UK
    474 schema:name Department of Computing and Mathematics, Manchester Metropolitan University (MUU), M15 6BH, Manchester, UK
    475 The Hartree Centre, Sci-Tech Daresbury, IBM Research, WA4 4AD, Daresbury, UK
    476 rdf:type schema:Organization
    477 grid-institutes:grid.410387.9 schema:alternateName IBM Research - Zurich, Saumerstrasse 4, 8803, Rueschlikon, Switzerland
    478 schema:name IBM Research - Zurich, Saumerstrasse 4, 8803, Rueschlikon, Switzerland
    479 rdf:type schema:Organization
    480 grid-institutes:grid.481554.9 schema:alternateName T.J. Watson Research Center, IBM Research, 10598, Yorktown Heights, NY, USA
    481 schema:name T.J. Watson Research Center, IBM Research, 10598, Yorktown Heights, NY, USA
    482 rdf:type schema:Organization
    483 grid-institutes:grid.498189.5 schema:alternateName The Hartree Centre, Sci-Tech Daresbury, IBM Research, WA4 4AD, Daresbury, UK
    484 schema:name The Hartree Centre, Sci-Tech Daresbury, IBM Research, WA4 4AD, Daresbury, UK
    485 rdf:type schema:Organization
    486 grid-institutes:grid.5379.8 schema:alternateName Department of Computer Science, University of Manchester (UoM), M13 9LP, Manchester, UK
    487 schema:name Department of Computer Science, University of Manchester (UoM), M13 9LP, Manchester, UK
    488 The Hartree Centre, Sci-Tech Daresbury, IBM Research, WA4 4AD, Daresbury, UK
    489 rdf:type schema:Organization
    490 grid-institutes:grid.6572.6 schema:alternateName University of Birmingham, Birmingham, UK
    491 schema:name University of Birmingham, Birmingham, UK
    492 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...