Combinatorial measurement of critical cooling rates in aluminum-base metallic glass forming alloys View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-02-16

AUTHORS

Naijia Liu, Tianxing Ma, Chaoqun Liao, Guannan Liu, Rodrigo Miguel Ojeda Mota, Jingbei Liu, Sungwoo Sohn, Sebastian Kube, Shaofan Zhao, Jonathan P. Singer, Jan Schroers

ABSTRACT

Direct measurement of critical cooling rates has been challenging and only determined for a minute fraction of the reported metallic glass forming alloys. Here, we report a method that directly measures critical cooling rate of thin film metallic glass forming alloys in a combinatorial fashion. Based on a universal heating architecture using indirect laser heating and a microstructure analysis this method offers itself as a rapid screening technique to quantify glass forming ability. We use this method to identify glass forming alloys and study the composition effect on the critical cooling rate in the Al–Ni–Ge system where we identified Al51Ge35Ni14 as the best glass forming composition with a critical cooling rate of 104 K/s. More... »

PAGES

3903

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-021-83384-w

DOI

http://dx.doi.org/10.1038/s41598-021-83384-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1135374153

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/33594154


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Naijia", 
        "id": "sg:person.011760533077.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011760533077.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, 08854, Piscataway, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, 08854, Piscataway, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Tianxing", 
        "id": "sg:person.016345754667.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016345754667.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, 100029, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.48166.3d", 
          "name": [
            "Qian Xuesen Laboratory of Space Technology, 100094, Beijing, China", 
            "College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liao", 
        "givenName": "Chaoqun", 
        "id": "sg:person.010615636647.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010615636647.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Guannan", 
        "id": "sg:person.014465637347.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014465637347.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mota", 
        "givenName": "Rodrigo Miguel Ojeda", 
        "id": "sg:person.07432636061.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07432636061.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jingbei", 
        "id": "sg:person.01262432721.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262432721.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sohn", 
        "givenName": "Sungwoo", 
        "id": "sg:person.01167274630.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167274630.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kube", 
        "givenName": "Sebastian", 
        "id": "sg:person.014753013667.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014753013667.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Qian Xuesen Laboratory of Space Technology, 100094, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.452783.f", 
          "name": [
            "Qian Xuesen Laboratory of Space Technology, 100094, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Shaofan", 
        "id": "sg:person.014737746615.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014737746615.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, 08854, Piscataway, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, 08854, Piscataway, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singer", 
        "givenName": "Jonathan P.", 
        "id": "sg:person.0715052322.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715052322.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schroers", 
        "givenName": "Jan", 
        "id": "sg:person.01145527322.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145527322.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1557/s0883769400053252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067964161", 
          "https://doi.org/10.1557/s0883769400053252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-07719-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090947944", 
          "https://doi.org/10.1038/s41598-017-07719-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010259132", 
          "https://doi.org/10.1038/nature13617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03027478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048287543", 
          "https://doi.org/10.1007/bf03027478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/187869b0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018841532", 
          "https://doi.org/10.1038/187869b0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021477303", 
          "https://doi.org/10.1038/nmat1219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026325779", 
          "https://doi.org/10.1038/nmat3939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02822618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042311569", 
          "https://doi.org/10.1007/bf02822618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms10313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008045042", 
          "https://doi.org/10.1038/ncomms10313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-019-43666-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1114013426", 
          "https://doi.org/10.1038/s41598-019-43666-w"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-015-2900-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011874727", 
          "https://doi.org/10.1007/s11661-015-2900-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.2010.0286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027214760", 
          "https://doi.org/10.1557/jmr.2010.0286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-019-1145-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1113858723", 
          "https://doi.org/10.1038/s41586-019-1145-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-02-16", 
    "datePublishedReg": "2021-02-16", 
    "description": "Direct measurement of critical cooling rates has been challenging and only determined for a minute fraction of the reported metallic glass forming alloys. Here, we report a method that directly measures critical cooling rate of thin film metallic glass forming alloys in a combinatorial fashion. Based on a universal heating architecture using indirect laser heating and a microstructure analysis this method offers itself as a rapid screening technique to quantify glass forming ability. We use this method to identify glass forming alloys and study the composition effect on the critical cooling rate in the Al\u2013Ni\u2013Ge system where we identified Al51Ge35Ni14 as the best glass forming composition with a critical cooling rate of 104\u00a0K/s.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-021-83384-w", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4322384", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3850692", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "critical cooling rate", 
      "cooling rate", 
      "metallic glasses", 
      "thin film metallic glasses", 
      "aluminum-based metallic glasses", 
      "microstructure analysis", 
      "alloy", 
      "laser heating", 
      "Al\u2013Ni", 
      "good glass", 
      "glass", 
      "Ge system", 
      "direct measurement", 
      "composition effects", 
      "heating", 
      "measurements", 
      "combinatorial measurements", 
      "method", 
      "rate", 
      "rapid screening technique", 
      "minute fraction", 
      "technique", 
      "system", 
      "composition", 
      "fraction", 
      "architecture", 
      "effect", 
      "analysis", 
      "ability", 
      "screening technique", 
      "combinatorial fashion", 
      "fashion"
    ], 
    "name": "Combinatorial measurement of critical cooling rates in aluminum-base metallic glass forming alloys", 
    "pagination": "3903", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1135374153"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-021-83384-w"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "33594154"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-021-83384-w", 
      "https://app.dimensions.ai/details/publication/pub.1135374153"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_889.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-021-83384-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-83384-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-83384-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-83384-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-83384-w'


 

This table displays all metadata directly associated to this object as RDF triples.

228 TRIPLES      21 PREDICATES      70 URIs      49 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-021-83384-w schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N9f675d7833ea449a931ff2725e5bd698
4 schema:citation sg:pub.10.1007/bf02822618
5 sg:pub.10.1007/bf03027478
6 sg:pub.10.1007/s11661-015-2900-x
7 sg:pub.10.1038/187869b0
8 sg:pub.10.1038/nature13617
9 sg:pub.10.1038/ncomms10313
10 sg:pub.10.1038/nmat1219
11 sg:pub.10.1038/nmat3939
12 sg:pub.10.1038/s41586-019-1145-z
13 sg:pub.10.1038/s41598-017-07719-2
14 sg:pub.10.1038/s41598-019-43666-w
15 sg:pub.10.1557/jmr.2010.0286
16 sg:pub.10.1557/s0883769400053252
17 schema:datePublished 2021-02-16
18 schema:datePublishedReg 2021-02-16
19 schema:description Direct measurement of critical cooling rates has been challenging and only determined for a minute fraction of the reported metallic glass forming alloys. Here, we report a method that directly measures critical cooling rate of thin film metallic glass forming alloys in a combinatorial fashion. Based on a universal heating architecture using indirect laser heating and a microstructure analysis this method offers itself as a rapid screening technique to quantify glass forming ability. We use this method to identify glass forming alloys and study the composition effect on the critical cooling rate in the Al–Ni–Ge system where we identified Al51Ge35Ni14 as the best glass forming composition with a critical cooling rate of 104 K/s.
20 schema:genre article
21 schema:isAccessibleForFree true
22 schema:isPartOf N629ee0376bb5404aaf147e3454a98efb
23 Nad2bb78aaf2747ba8b1250382f5cd0b7
24 sg:journal.1045337
25 schema:keywords Al–Ni
26 Ge system
27 ability
28 alloy
29 aluminum-based metallic glasses
30 analysis
31 architecture
32 combinatorial fashion
33 combinatorial measurements
34 composition
35 composition effects
36 cooling rate
37 critical cooling rate
38 direct measurement
39 effect
40 fashion
41 fraction
42 glass
43 good glass
44 heating
45 laser heating
46 measurements
47 metallic glasses
48 method
49 microstructure analysis
50 minute fraction
51 rapid screening technique
52 rate
53 screening technique
54 system
55 technique
56 thin film metallic glasses
57 schema:name Combinatorial measurement of critical cooling rates in aluminum-base metallic glass forming alloys
58 schema:pagination 3903
59 schema:productId N3cebb73eb26a47de98fb739383a01084
60 N4d66c8898a484bb5917760bbaec4f8ed
61 N997f7ffdf373490690764cf052822d7e
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135374153
63 https://doi.org/10.1038/s41598-021-83384-w
64 schema:sdDatePublished 2022-09-02T16:05
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher Nde5d0f9f47994095b6c00ec07e20aa41
67 schema:url https://doi.org/10.1038/s41598-021-83384-w
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N1663563ba3944c8992bc840a8870a92f rdf:first sg:person.014753013667.30
72 rdf:rest N27864dd785914c06b67c5582fe169195
73 N21a9a9df0d0e49d0ad8987f2f8fccf76 rdf:first sg:person.010615636647.15
74 rdf:rest N51a34cda521a4b8a9fbe6481e27956a9
75 N27864dd785914c06b67c5582fe169195 rdf:first sg:person.014737746615.12
76 rdf:rest Nf39d2f7badc245dbbe11894f1a2968da
77 N3cebb73eb26a47de98fb739383a01084 schema:name pubmed_id
78 schema:value 33594154
79 rdf:type schema:PropertyValue
80 N4963ede5dfc24467acf6888d688fead5 rdf:first sg:person.01167274630.47
81 rdf:rest N1663563ba3944c8992bc840a8870a92f
82 N4d66c8898a484bb5917760bbaec4f8ed schema:name dimensions_id
83 schema:value pub.1135374153
84 rdf:type schema:PropertyValue
85 N51a34cda521a4b8a9fbe6481e27956a9 rdf:first sg:person.014465637347.15
86 rdf:rest N58a4c717e9464376b3339d0784217ef3
87 N58a4c717e9464376b3339d0784217ef3 rdf:first sg:person.07432636061.20
88 rdf:rest Nff03eafbc3ea432a8900565c9606a046
89 N58f02c977b704915a2e26129ec903cfb rdf:first sg:person.016345754667.11
90 rdf:rest N21a9a9df0d0e49d0ad8987f2f8fccf76
91 N629ee0376bb5404aaf147e3454a98efb schema:volumeNumber 11
92 rdf:type schema:PublicationVolume
93 N851282303bca40fa9f23dc33588487da rdf:first sg:person.01145527322.19
94 rdf:rest rdf:nil
95 N997f7ffdf373490690764cf052822d7e schema:name doi
96 schema:value 10.1038/s41598-021-83384-w
97 rdf:type schema:PropertyValue
98 N9f675d7833ea449a931ff2725e5bd698 rdf:first sg:person.011760533077.07
99 rdf:rest N58f02c977b704915a2e26129ec903cfb
100 Nad2bb78aaf2747ba8b1250382f5cd0b7 schema:issueNumber 1
101 rdf:type schema:PublicationIssue
102 Nde5d0f9f47994095b6c00ec07e20aa41 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 Nf39d2f7badc245dbbe11894f1a2968da rdf:first sg:person.0715052322.41
105 rdf:rest N851282303bca40fa9f23dc33588487da
106 Nff03eafbc3ea432a8900565c9606a046 rdf:first sg:person.01262432721.25
107 rdf:rest N4963ede5dfc24467acf6888d688fead5
108 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
109 schema:name Engineering
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
112 schema:name Materials Engineering
113 rdf:type schema:DefinedTerm
114 sg:grant.3850692 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-021-83384-w
115 rdf:type schema:MonetaryGrant
116 sg:grant.4322384 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-021-83384-w
117 rdf:type schema:MonetaryGrant
118 sg:journal.1045337 schema:issn 2045-2322
119 schema:name Scientific Reports
120 schema:publisher Springer Nature
121 rdf:type schema:Periodical
122 sg:person.010615636647.15 schema:affiliation grid-institutes:grid.48166.3d
123 schema:familyName Liao
124 schema:givenName Chaoqun
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010615636647.15
126 rdf:type schema:Person
127 sg:person.01145527322.19 schema:affiliation grid-institutes:grid.47100.32
128 schema:familyName Schroers
129 schema:givenName Jan
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145527322.19
131 rdf:type schema:Person
132 sg:person.01167274630.47 schema:affiliation grid-institutes:grid.47100.32
133 schema:familyName Sohn
134 schema:givenName Sungwoo
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167274630.47
136 rdf:type schema:Person
137 sg:person.011760533077.07 schema:affiliation grid-institutes:grid.47100.32
138 schema:familyName Liu
139 schema:givenName Naijia
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011760533077.07
141 rdf:type schema:Person
142 sg:person.01262432721.25 schema:affiliation grid-institutes:grid.47100.32
143 schema:familyName Liu
144 schema:givenName Jingbei
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262432721.25
146 rdf:type schema:Person
147 sg:person.014465637347.15 schema:affiliation grid-institutes:grid.47100.32
148 schema:familyName Liu
149 schema:givenName Guannan
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014465637347.15
151 rdf:type schema:Person
152 sg:person.014737746615.12 schema:affiliation grid-institutes:grid.452783.f
153 schema:familyName Zhao
154 schema:givenName Shaofan
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014737746615.12
156 rdf:type schema:Person
157 sg:person.014753013667.30 schema:affiliation grid-institutes:grid.47100.32
158 schema:familyName Kube
159 schema:givenName Sebastian
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014753013667.30
161 rdf:type schema:Person
162 sg:person.016345754667.11 schema:affiliation grid-institutes:grid.430387.b
163 schema:familyName Ma
164 schema:givenName Tianxing
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016345754667.11
166 rdf:type schema:Person
167 sg:person.0715052322.41 schema:affiliation grid-institutes:grid.430387.b
168 schema:familyName Singer
169 schema:givenName Jonathan P.
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715052322.41
171 rdf:type schema:Person
172 sg:person.07432636061.20 schema:affiliation grid-institutes:grid.47100.32
173 schema:familyName Mota
174 schema:givenName Rodrigo Miguel Ojeda
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07432636061.20
176 rdf:type schema:Person
177 sg:pub.10.1007/bf02822618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042311569
178 https://doi.org/10.1007/bf02822618
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/bf03027478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048287543
181 https://doi.org/10.1007/bf03027478
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/s11661-015-2900-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011874727
184 https://doi.org/10.1007/s11661-015-2900-x
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/187869b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018841532
187 https://doi.org/10.1038/187869b0
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nature13617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010259132
190 https://doi.org/10.1038/nature13617
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/ncomms10313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008045042
193 https://doi.org/10.1038/ncomms10313
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/nmat1219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021477303
196 https://doi.org/10.1038/nmat1219
197 rdf:type schema:CreativeWork
198 sg:pub.10.1038/nmat3939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026325779
199 https://doi.org/10.1038/nmat3939
200 rdf:type schema:CreativeWork
201 sg:pub.10.1038/s41586-019-1145-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1113858723
202 https://doi.org/10.1038/s41586-019-1145-z
203 rdf:type schema:CreativeWork
204 sg:pub.10.1038/s41598-017-07719-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090947944
205 https://doi.org/10.1038/s41598-017-07719-2
206 rdf:type schema:CreativeWork
207 sg:pub.10.1038/s41598-019-43666-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1114013426
208 https://doi.org/10.1038/s41598-019-43666-w
209 rdf:type schema:CreativeWork
210 sg:pub.10.1557/jmr.2010.0286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027214760
211 https://doi.org/10.1557/jmr.2010.0286
212 rdf:type schema:CreativeWork
213 sg:pub.10.1557/s0883769400053252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067964161
214 https://doi.org/10.1557/s0883769400053252
215 rdf:type schema:CreativeWork
216 grid-institutes:grid.430387.b schema:alternateName Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, 08854, Piscataway, NJ, USA
217 schema:name Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, 08854, Piscataway, NJ, USA
218 rdf:type schema:Organization
219 grid-institutes:grid.452783.f schema:alternateName Qian Xuesen Laboratory of Space Technology, 100094, Beijing, China
220 schema:name Qian Xuesen Laboratory of Space Technology, 100094, Beijing, China
221 rdf:type schema:Organization
222 grid-institutes:grid.47100.32 schema:alternateName Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA
223 schema:name Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA
224 rdf:type schema:Organization
225 grid-institutes:grid.48166.3d schema:alternateName College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
226 schema:name College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
227 Qian Xuesen Laboratory of Space Technology, 100094, Beijing, China
228 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...