High efficiency laser resonance ionization of plutonium View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-12-06

AUTHORS

Alfredo Galindo-Uribarri, Yuan Liu, Elisa Romero Romero, Daniel W. Stracener

ABSTRACT

Three-step resonance photoionization spectra of plutonium have been studied with Ti:Sapphire lasers for the development of efficient laser ionization schemes for ultra-trace analysis of Pu isotopes by resonance ionization mass spectrometry. We observed eighteen intermediate excited states of even parity in the energy range 35568–36701 cm-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {cm}}^{-1}$$\end{document}, thirteen of them have not been previously documented, and a larger number of high-lying excited states and autoionizing states of odd-parity between 48238 and 49510 cm-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {cm}}^{-1}$$\end{document}. Three-color, three-photon ionization schemes via six intermediate states were evaluated under similar ion source operating conditions. This led to a highly efficient three-step scheme with an overall ionization efficiency of 51.1±1.3%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$51.1 \pm 1.3\%$$\end{document}, which is an order of magnitude improvement over the previously reported ionization efficiency for Pu. More... »

PAGES

23432

References to SciGraph publications

  • 2014-08-31. Ultratrace analysis of long-lived radionuclides by resonance ionization mass spectrometry (RIMS) in JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
  • 2012-08-03. Detection of plutonium isotopes at lowest quantities using in-source resonance ionization mass spectrometry in ANALYTICAL AND BIOANALYTICAL CHEMISTRY
  • 2015-01-20. Abundance of live 244Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis in NATURE COMMUNICATIONS
  • 2003-09-11. Ultratrace analysis and isotope ratio measurements of long-lived radioisotopes by resonance ionization mass spectrometry (RIMS) in ANALYTICAL AND BIOANALYTICAL CHEMISTRY
  • 2009-06-26. Resonance ionization mass spectrometry of ion beam sputtered neutrals for element- and isotope-selective analysis of plutonium in micro-particles in ANALYTICAL AND BIOANALYTICAL CHEMISTRY
  • 1985-09. Laser resonant ionization of plutonium in APPLIED PHYSICS B
  • 2015-09-01. Improved precision and accuracy in quantifying plutonium isotope ratios by RIMS in JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
  • 2020-03-16. Highly selective two-step laser ionization schemes for the analysis of actinide mixtures in HYPERFINE INTERACTIONS
  • 2004-05. Efficient three-step, two-color ionization of plutonium using a resonance enhanced 2-photon transition into an autoionizing state in THE EUROPEAN PHYSICAL JOURNAL D
  • 2016-12-19. Resonance ionization spectroscopy in dysprosium in HYPERFINE INTERACTIONS
  • 2006-07. TRIUMF resonant ionization laser ion source in HYPERFINE INTERACTIONS
  • 1985-12. Trace detection of plutonium by three-step photoionization with a laser system pumped by a copper vapor laser in APPLIED PHYSICS B
  • 2019-11-11. Trace analysis of radioisotopes by laser spectroscopy and mass spectrometry in JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
  • 2020-03-03. Influence of the hyperfine structure on plutonium in resonant laser-SNMS in HYPERFINE INTERACTIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-021-01886-z

    DOI

    http://dx.doi.org/10.1038/s41598-021-01886-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1143655359

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/34873192


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Physics and Astronomy, University of Tennessee, 37996, Knoxville, TN, USA", 
              "id": "http://www.grid.ac/institutes/grid.411461.7", 
              "name": [
                "Physics Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA", 
                "Department of Physics and Astronomy, University of Tennessee, 37996, Knoxville, TN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Galindo-Uribarri", 
            "givenName": "Alfredo", 
            "id": "sg:person.01243514634.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243514634.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Facility for Rare Isotope Beams, Michigan State University, 48824, East Lansing, MI, USA", 
              "id": "http://www.grid.ac/institutes/grid.17088.36", 
              "name": [
                "Physics Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA", 
                "Facility for Rare Isotope Beams, Michigan State University, 48824, East Lansing, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Yuan", 
            "id": "sg:person.01256260724.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256260724.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Helmholtz-Institut Mainz, Johannes Gutenberg Universit\u00e4t Mainz, 55128, Mainz, Germany", 
              "id": "http://www.grid.ac/institutes/grid.5802.f", 
              "name": [
                "Physics Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA", 
                "Department of Physics and Astronomy, University of Tennessee, 37996, Knoxville, TN, USA", 
                "Helmholtz-Institut Mainz, Johannes Gutenberg Universit\u00e4t Mainz, 55128, Mainz, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Romero Romero", 
            "givenName": "Elisa", 
            "id": "sg:person.010502454167.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010502454167.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Physics Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA", 
              "id": "http://www.grid.ac/institutes/grid.135519.a", 
              "name": [
                "Physics Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stracener", 
            "givenName": "Daniel W.", 
            "id": "sg:person.014412052603.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014412052603.50"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ncomms6956", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033800809", 
              "https://doi.org/10.1038/ncomms6956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10751-020-1696-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125349869", 
              "https://doi.org/10.1007/s10751-020-1696-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjd/e2004-00024-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036381668", 
              "https://doi.org/10.1140/epjd/e2004-00024-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10967-019-06899-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122484667", 
              "https://doi.org/10.1007/s10967-019-06899-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00216-012-6238-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035660311", 
              "https://doi.org/10.1007/s00216-012-6238-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10751-020-01712-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125684788", 
              "https://doi.org/10.1007/s10751-020-01712-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10751-016-1384-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036110679", 
              "https://doi.org/10.1007/s10751-016-1384-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00216-009-2906-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028405409", 
              "https://doi.org/10.1007/s00216-009-2906-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10967-014-3475-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050050852", 
              "https://doi.org/10.1007/s10967-014-3475-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10751-006-9493-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038265271", 
              "https://doi.org/10.1007/s10751-006-9493-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00818051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029475431", 
              "https://doi.org/10.1007/bf00818051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00691772", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023431322", 
              "https://doi.org/10.1007/bf00691772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10967-015-4393-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010877044", 
              "https://doi.org/10.1007/s10967-015-4393-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00216-003-2183-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052936716", 
              "https://doi.org/10.1007/s00216-003-2183-8"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-12-06", 
        "datePublishedReg": "2021-12-06", 
        "description": "Three-step resonance photoionization spectra of plutonium have been studied with Ti:Sapphire lasers for the development of efficient laser ionization schemes for ultra-trace analysis of Pu isotopes by resonance ionization mass spectrometry. We observed eighteen intermediate excited states of even parity in the energy range 35568\u201336701\u00a0cm-1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\text {cm}}^{-1}$$\\end{document}, thirteen of them have not been previously documented, and a larger number of high-lying excited states and autoionizing states of odd-parity between 48238 and 49510\u00a0cm-1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\text {cm}}^{-1}$$\\end{document}. Three-color, three-photon ionization schemes via six intermediate states were evaluated under similar ion source operating conditions. This led to a highly efficient three-step scheme with an overall ionization efficiency of 51.1\u00b11.3%\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$51.1 \\pm 1.3\\%$$\\end{document}, which is an order of magnitude improvement over the previously reported ionization efficiency for Pu.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-021-01886-z", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7926805", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "keywords": [
          "ionization scheme", 
          "excited states", 
          "ion source operating conditions", 
          "laser resonance ionization", 
          "laser ionization scheme", 
          "resonance ionization mass spectrometry", 
          "intermediate excited states", 
          "source operating conditions", 
          "overall ionization efficiency", 
          "ionization efficiency", 
          "sapphire laser", 
          "resonance ionization", 
          "autoionizing states", 
          "resonance photoionization", 
          "three-color", 
          "intermediate state", 
          "magnitude improvement", 
          "ultra-trace analysis", 
          "Pu isotopes", 
          "photoionization", 
          "laser", 
          "ionization", 
          "three-step scheme", 
          "state", 
          "plutonium", 
          "isotopes", 
          "ionization mass spectrometry", 
          "Ti", 
          "scheme", 
          "mass spectrometry", 
          "efficiency", 
          "parity", 
          "operating conditions", 
          "spectrometry", 
          "large number", 
          "order", 
          "conditions", 
          "PU", 
          "number", 
          "analysis", 
          "improvement", 
          "development"
        ], 
        "name": "High efficiency laser resonance ionization of plutonium", 
        "pagination": "23432", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1143655359"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-021-01886-z"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "34873192"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-021-01886-z", 
          "https://app.dimensions.ai/details/publication/pub.1143655359"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:11", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_894.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-021-01886-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-01886-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-01886-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-01886-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-01886-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    194 TRIPLES      21 PREDICATES      81 URIs      59 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-021-01886-z schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author N118fc7901137411fa0cc10feb4dbb9f6
    4 schema:citation sg:pub.10.1007/bf00691772
    5 sg:pub.10.1007/bf00818051
    6 sg:pub.10.1007/s00216-003-2183-8
    7 sg:pub.10.1007/s00216-009-2906-6
    8 sg:pub.10.1007/s00216-012-6238-6
    9 sg:pub.10.1007/s10751-006-9493-0
    10 sg:pub.10.1007/s10751-016-1384-4
    11 sg:pub.10.1007/s10751-020-01712-4
    12 sg:pub.10.1007/s10751-020-1696-2
    13 sg:pub.10.1007/s10967-014-3475-5
    14 sg:pub.10.1007/s10967-015-4393-x
    15 sg:pub.10.1007/s10967-019-06899-7
    16 sg:pub.10.1038/ncomms6956
    17 sg:pub.10.1140/epjd/e2004-00024-4
    18 schema:datePublished 2021-12-06
    19 schema:datePublishedReg 2021-12-06
    20 schema:description Three-step resonance photoionization spectra of plutonium have been studied with Ti:Sapphire lasers for the development of efficient laser ionization schemes for ultra-trace analysis of Pu isotopes by resonance ionization mass spectrometry. We observed eighteen intermediate excited states of even parity in the energy range 35568–36701 cm-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {cm}}^{-1}$$\end{document}, thirteen of them have not been previously documented, and a larger number of high-lying excited states and autoionizing states of odd-parity between 48238 and 49510 cm-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {cm}}^{-1}$$\end{document}. Three-color, three-photon ionization schemes via six intermediate states were evaluated under similar ion source operating conditions. This led to a highly efficient three-step scheme with an overall ionization efficiency of 51.1±1.3%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$51.1 \pm 1.3\%$$\end{document}, which is an order of magnitude improvement over the previously reported ionization efficiency for Pu.
    21 schema:genre article
    22 schema:isAccessibleForFree true
    23 schema:isPartOf N1420d9c1332b4703817f3d1826779410
    24 Neb2a7ddd6d1e47ce873a63d003a9b71e
    25 sg:journal.1045337
    26 schema:keywords PU
    27 Pu isotopes
    28 Ti
    29 analysis
    30 autoionizing states
    31 conditions
    32 development
    33 efficiency
    34 excited states
    35 improvement
    36 intermediate excited states
    37 intermediate state
    38 ion source operating conditions
    39 ionization
    40 ionization efficiency
    41 ionization mass spectrometry
    42 ionization scheme
    43 isotopes
    44 large number
    45 laser
    46 laser ionization scheme
    47 laser resonance ionization
    48 magnitude improvement
    49 mass spectrometry
    50 number
    51 operating conditions
    52 order
    53 overall ionization efficiency
    54 parity
    55 photoionization
    56 plutonium
    57 resonance ionization
    58 resonance ionization mass spectrometry
    59 resonance photoionization
    60 sapphire laser
    61 scheme
    62 source operating conditions
    63 spectrometry
    64 state
    65 three-color
    66 three-step scheme
    67 ultra-trace analysis
    68 schema:name High efficiency laser resonance ionization of plutonium
    69 schema:pagination 23432
    70 schema:productId N3102d5350f3d49e3a67051f893c7187d
    71 N55b852a2c366480298dc829c63a0f860
    72 N91e9b5e10b4b4cf28016cb0a709500aa
    73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143655359
    74 https://doi.org/10.1038/s41598-021-01886-z
    75 schema:sdDatePublished 2022-08-04T17:11
    76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    77 schema:sdPublisher Ndf7d09efd373412b98a584c3f96f6c6a
    78 schema:url https://doi.org/10.1038/s41598-021-01886-z
    79 sgo:license sg:explorer/license/
    80 sgo:sdDataset articles
    81 rdf:type schema:ScholarlyArticle
    82 N118fc7901137411fa0cc10feb4dbb9f6 rdf:first sg:person.01243514634.17
    83 rdf:rest Nca65f28337c145bb8dec9338ec0bd510
    84 N1420d9c1332b4703817f3d1826779410 schema:issueNumber 1
    85 rdf:type schema:PublicationIssue
    86 N29c8bd620ff243b784d3707cbd908bec rdf:first sg:person.014412052603.50
    87 rdf:rest rdf:nil
    88 N3102d5350f3d49e3a67051f893c7187d schema:name pubmed_id
    89 schema:value 34873192
    90 rdf:type schema:PropertyValue
    91 N55b852a2c366480298dc829c63a0f860 schema:name dimensions_id
    92 schema:value pub.1143655359
    93 rdf:type schema:PropertyValue
    94 N91e9b5e10b4b4cf28016cb0a709500aa schema:name doi
    95 schema:value 10.1038/s41598-021-01886-z
    96 rdf:type schema:PropertyValue
    97 Naafda51513f949a9bbda6d4f35a279ac rdf:first sg:person.010502454167.12
    98 rdf:rest N29c8bd620ff243b784d3707cbd908bec
    99 Nca65f28337c145bb8dec9338ec0bd510 rdf:first sg:person.01256260724.48
    100 rdf:rest Naafda51513f949a9bbda6d4f35a279ac
    101 Ndf7d09efd373412b98a584c3f96f6c6a schema:name Springer Nature - SN SciGraph project
    102 rdf:type schema:Organization
    103 Neb2a7ddd6d1e47ce873a63d003a9b71e schema:volumeNumber 11
    104 rdf:type schema:PublicationVolume
    105 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Physical Sciences
    107 rdf:type schema:DefinedTerm
    108 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    109 schema:name Other Physical Sciences
    110 rdf:type schema:DefinedTerm
    111 sg:grant.7926805 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-021-01886-z
    112 rdf:type schema:MonetaryGrant
    113 sg:journal.1045337 schema:issn 2045-2322
    114 schema:name Scientific Reports
    115 schema:publisher Springer Nature
    116 rdf:type schema:Periodical
    117 sg:person.010502454167.12 schema:affiliation grid-institutes:grid.5802.f
    118 schema:familyName Romero Romero
    119 schema:givenName Elisa
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010502454167.12
    121 rdf:type schema:Person
    122 sg:person.01243514634.17 schema:affiliation grid-institutes:grid.411461.7
    123 schema:familyName Galindo-Uribarri
    124 schema:givenName Alfredo
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243514634.17
    126 rdf:type schema:Person
    127 sg:person.01256260724.48 schema:affiliation grid-institutes:grid.17088.36
    128 schema:familyName Liu
    129 schema:givenName Yuan
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256260724.48
    131 rdf:type schema:Person
    132 sg:person.014412052603.50 schema:affiliation grid-institutes:grid.135519.a
    133 schema:familyName Stracener
    134 schema:givenName Daniel W.
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014412052603.50
    136 rdf:type schema:Person
    137 sg:pub.10.1007/bf00691772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023431322
    138 https://doi.org/10.1007/bf00691772
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/bf00818051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029475431
    141 https://doi.org/10.1007/bf00818051
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/s00216-003-2183-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052936716
    144 https://doi.org/10.1007/s00216-003-2183-8
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/s00216-009-2906-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028405409
    147 https://doi.org/10.1007/s00216-009-2906-6
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/s00216-012-6238-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035660311
    150 https://doi.org/10.1007/s00216-012-6238-6
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/s10751-006-9493-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038265271
    153 https://doi.org/10.1007/s10751-006-9493-0
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/s10751-016-1384-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036110679
    156 https://doi.org/10.1007/s10751-016-1384-4
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/s10751-020-01712-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125684788
    159 https://doi.org/10.1007/s10751-020-01712-4
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/s10751-020-1696-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125349869
    162 https://doi.org/10.1007/s10751-020-1696-2
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/s10967-014-3475-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050050852
    165 https://doi.org/10.1007/s10967-014-3475-5
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s10967-015-4393-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010877044
    168 https://doi.org/10.1007/s10967-015-4393-x
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/s10967-019-06899-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122484667
    171 https://doi.org/10.1007/s10967-019-06899-7
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1038/ncomms6956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033800809
    174 https://doi.org/10.1038/ncomms6956
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1140/epjd/e2004-00024-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036381668
    177 https://doi.org/10.1140/epjd/e2004-00024-4
    178 rdf:type schema:CreativeWork
    179 grid-institutes:grid.135519.a schema:alternateName Physics Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA
    180 schema:name Physics Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA
    181 rdf:type schema:Organization
    182 grid-institutes:grid.17088.36 schema:alternateName Facility for Rare Isotope Beams, Michigan State University, 48824, East Lansing, MI, USA
    183 schema:name Facility for Rare Isotope Beams, Michigan State University, 48824, East Lansing, MI, USA
    184 Physics Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA
    185 rdf:type schema:Organization
    186 grid-institutes:grid.411461.7 schema:alternateName Department of Physics and Astronomy, University of Tennessee, 37996, Knoxville, TN, USA
    187 schema:name Department of Physics and Astronomy, University of Tennessee, 37996, Knoxville, TN, USA
    188 Physics Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA
    189 rdf:type schema:Organization
    190 grid-institutes:grid.5802.f schema:alternateName Helmholtz-Institut Mainz, Johannes Gutenberg Universität Mainz, 55128, Mainz, Germany
    191 schema:name Department of Physics and Astronomy, University of Tennessee, 37996, Knoxville, TN, USA
    192 Helmholtz-Institut Mainz, Johannes Gutenberg Universität Mainz, 55128, Mainz, Germany
    193 Physics Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA
    194 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...