Nano-photoluminescence of natural anyon molecules and topological quantum computation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-11-02

AUTHORS

Alexander M. Mintairov, Dmitrii V. Lebedev, Alexei S. Vlasov, Alexei O. Orlov, Gregory L. Snider, Steven A. Blundell

ABSTRACT

The proposal of fault-tolerant quantum computations, which promise to dramatically improve the operation of quantum computers and to accelerate the development of the compact hardware for them, is based on topological quantum field theories, which rely on the existence in Nature of physical systems described by a Lagrangian containing a non-Abelian (NA) topological term. These are solid-state systems having two-dimensional electrons, which are coupled to magnetic-flux-quanta vortexes, forming complex particles, known as anyons. Topological quantum computing (TQC) operations thus represent a physical realization of the mathematical operations involving NA representations of a braid group Bn, generated by a set of n localized anyons, which can be braided and fused using a “tweezer” and controlled by a detector. For most of the potential TQC material systems known so far, which are 2D-electron–gas semiconductor structure at high magnetic field and a variety of hybrid superconductor/topological-material heterostructures, the realization of anyon localization versus tweezing and detecting meets serious obstacles, chief among which are the necessity of using current control, i.e., mobile particles, of the TQC operations and high density electron puddles (containing thousands of electrons) to generate a single vortex. Here we demonstrate a novel system, in which these obstacles can be overcome, and in which vortexes are generated by a single electron. This is a ~ 150 nm size many electron InP/GaInP2 self-organized quantum dot, in which molecules, consisting of a few localized anyons, are naturally formed and exist at zero external magnetic field. We used high-spatial-resolution scanning magneto-photoluminescence spectroscopy measurements of a set of the dots having five and six electrons, together with many-body quantum mechanical calculations to demonstrate spontaneous formation of the anyon magneto-electron particles (eν) having fractional charge ν = n/k, where n = 1–4 and k = 3–15 are the number of electrons and vortexes, respectively, arranged in molecular structures having a built-in (internal) magnetic field of 6–12 T. Using direct imaging of the molecular configurations we observed fusion and braiding of eν-anyons under photo-excitation and revealed the possibility of using charge sensing for their control. Our investigations show that InP/GaInP2 anyon-molecule QDs, which have intrinsic transformations of localized eν-anyons compatible with TQC operations and capable of being probed by charge sensing, are very promising for the realization of TQC. More... »

PAGES

21440

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-021-00859-6

DOI

http://dx.doi.org/10.1038/s41598-021-00859-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1142327079

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/34728665


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Electrical Engineering, University of Notre Dame, 46556, Notre Dame, IN, USA", 
          "id": "http://www.grid.ac/institutes/grid.131063.6", 
          "name": [
            "Ioffe Institute, 194021, Saint Petersburg, Russia", 
            "Electrical Engineering, University of Notre Dame, 46556, Notre Dame, IN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mintairov", 
        "givenName": "Alexander M.", 
        "id": "sg:person.0762075347.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762075347.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, 194021, Saint Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, 194021, Saint Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lebedev", 
        "givenName": "Dmitrii V.", 
        "id": "sg:person.011763340603.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011763340603.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, 194021, Saint Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, 194021, Saint Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vlasov", 
        "givenName": "Alexei S.", 
        "id": "sg:person.015546623203.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015546623203.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Electrical Engineering, University of Notre Dame, 46556, Notre Dame, IN, USA", 
          "id": "http://www.grid.ac/institutes/grid.131063.6", 
          "name": [
            "Electrical Engineering, University of Notre Dame, 46556, Notre Dame, IN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orlov", 
        "givenName": "Alexei O.", 
        "id": "sg:person.014231026275.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014231026275.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Electrical Engineering, University of Notre Dame, 46556, Notre Dame, IN, USA", 
          "id": "http://www.grid.ac/institutes/grid.131063.6", 
          "name": [
            "Electrical Engineering, University of Notre Dame, 46556, Notre Dame, IN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Snider", 
        "givenName": "Gregory L.", 
        "id": "sg:person.01117445654.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117445654.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000, Grenoble, France", 
          "id": "http://www.grid.ac/institutes/grid.450307.5", 
          "name": [
            "University Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blundell", 
        "givenName": "Steven A.", 
        "id": "sg:person.016574600704.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016574600704.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-72002-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052039532", 
          "https://doi.org/10.1007/978-3-642-72002-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-019-13534-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1123013260", 
          "https://doi.org/10.1038/s41467-019-13534-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-019-1381-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1118042064", 
          "https://doi.org/10.1038/s41586-019-1381-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms9748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035863240", 
          "https://doi.org/10.1038/ncomms9748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027351129", 
          "https://doi.org/10.1038/nature06855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/npjqi.2015.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003791534", 
          "https://doi.org/10.1038/npjqi.2015.1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026793563", 
          "https://doi.org/10.1038/nature08812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61640-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036738090", 
          "https://doi.org/10.1007/978-3-642-61640-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2014.216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027074944", 
          "https://doi.org/10.1038/nnano.2014.216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-018-0184-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104306671", 
          "https://doi.org/10.1038/s41586-018-0184-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature25766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101019938", 
          "https://doi.org/10.1038/nature25766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.568223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044367790", 
          "https://doi.org/10.1134/1.568223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014316438", 
          "https://doi.org/10.1038/nature13171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-018-0274-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105348580", 
          "https://doi.org/10.1038/s41586-018-0274-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025159766", 
          "https://doi.org/10.1038/nature09680"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-11-02", 
    "datePublishedReg": "2021-11-02", 
    "description": "The proposal of fault-tolerant quantum computations, which promise to dramatically improve the operation of quantum computers and to accelerate the development of the compact hardware for them, is based on topological quantum field theories, which rely on the existence in Nature of physical systems described by a Lagrangian containing a non-Abelian (NA) topological term. These are solid-state systems having two-dimensional electrons, which are coupled to magnetic-flux-quanta vortexes, forming complex particles, known as anyons. Topological quantum computing (TQC) operations thus represent a physical realization of the mathematical operations involving NA representations of a braid group Bn, generated by a set of n localized anyons, which can be braided and fused using a \u201ctweezer\u201d and controlled by a detector. For most of the potential TQC material systems known so far, which are 2D-electron\u2013gas semiconductor structure at high magnetic field and a variety of hybrid superconductor/topological-material heterostructures, the realization of anyon localization versus tweezing and detecting meets serious obstacles, chief among which are the necessity of using current control, i.e., mobile particles, of the TQC operations and high density electron puddles (containing thousands of electrons) to generate a single vortex. Here we demonstrate a novel system, in which these obstacles can be overcome, and in which vortexes are generated by a single electron. This is a\u2009~\u2009150\u00a0nm size many electron InP/GaInP2 self-organized quantum dot, in which molecules, consisting of a few localized anyons, are naturally formed and exist at zero external magnetic field. We used high-spatial-resolution scanning magneto-photoluminescence spectroscopy measurements of a set of the dots having five and six electrons, together with many-body quantum mechanical calculations to demonstrate spontaneous formation of the anyon magneto-electron particles (e\u03bd) having fractional charge \u03bd\u2009=\u2009n/k, where n\u2009=\u20091\u20134 and k\u2009=\u20093\u201315 are the number of electrons and vortexes, respectively, arranged in molecular structures having a built-in (internal) magnetic field of 6\u201312\u00a0T. Using direct imaging of the molecular configurations we observed fusion and braiding of e\u03bd-anyons under photo-excitation and revealed the possibility of using charge sensing for their control. Our investigations show that InP/GaInP2 anyon-molecule QDs, which have intrinsic transformations of localized e\u03bd-anyons compatible with TQC operations and capable of being probed by charge sensing, are very promising for the realization of TQC.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-021-00859-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8413865", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8541182", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "magnetic field", 
      "quantum computation", 
      "fault-tolerant quantum computation", 
      "topological quantum field theory", 
      "body quantum mechanical calculations", 
      "topological quantum computation", 
      "two-dimensional electrons", 
      "solid-state systems", 
      "self-organized quantum dots", 
      "quantum field theory", 
      "quantum computing operations", 
      "high magnetic fields", 
      "quantum mechanical calculations", 
      "external magnetic field", 
      "number of electrons", 
      "braid group Bn", 
      "quantum vortices", 
      "electron puddles", 
      "quantum computer", 
      "single electron", 
      "direct imaging", 
      "charge sensing", 
      "semiconductor structures", 
      "field theory", 
      "mechanical calculations", 
      "quantum dots", 
      "spectroscopy measurements", 
      "electrons", 
      "mathematical operations", 
      "physical systems", 
      "topological term", 
      "single vortex", 
      "physical realization", 
      "group Bn", 
      "anyons", 
      "material system", 
      "dots", 
      "vortices", 
      "spontaneous formation", 
      "current control", 
      "mobile particles", 
      "molecular configuration", 
      "computing operations", 
      "particles", 
      "computation", 
      "complex particles", 
      "tweezing", 
      "field", 
      "tweezers", 
      "realization", 
      "heterostructures", 
      "molecular structure", 
      "Lagrangian", 
      "detector", 
      "intrinsic transformation", 
      "QDs", 
      "braiding", 
      "compact hardware", 
      "calculations", 
      "set", 
      "theory", 
      "system", 
      "structure", 
      "molecules", 
      "charge", 
      "puddles", 
      "measurements", 
      "existence", 
      "operation", 
      "imaging", 
      "BN", 
      "sensing", 
      "representation", 
      "configuration", 
      "computer", 
      "serious obstacle", 
      "terms", 
      "novel system", 
      "control", 
      "transformation", 
      "possibility", 
      "formation", 
      "number", 
      "hardware", 
      "obstacles", 
      "investigation", 
      "nature", 
      "fusion", 
      "TQC", 
      "proposal", 
      "localization", 
      "variety", 
      "necessity", 
      "development", 
      "chief"
    ], 
    "name": "Nano-photoluminescence of natural anyon molecules and topological quantum computation", 
    "pagination": "21440", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1142327079"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-021-00859-6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "34728665"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-021-00859-6", 
      "https://app.dimensions.ai/details/publication/pub.1142327079"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_915.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-021-00859-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-00859-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-00859-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-00859-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-00859-6'


 

This table displays all metadata directly associated to this object as RDF triples.

270 TRIPLES      22 PREDICATES      138 URIs      113 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-021-00859-6 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:03
4 anzsrc-for:0306
5 schema:author Nc69fbd7c7a7f4c20adf5fdef01bdc56d
6 schema:citation sg:pub.10.1007/978-3-642-61640-2
7 sg:pub.10.1007/978-3-642-72002-4
8 sg:pub.10.1038/nature06855
9 sg:pub.10.1038/nature08812
10 sg:pub.10.1038/nature09680
11 sg:pub.10.1038/nature13171
12 sg:pub.10.1038/nature25766
13 sg:pub.10.1038/ncomms9748
14 sg:pub.10.1038/nnano.2014.216
15 sg:pub.10.1038/npjqi.2015.1
16 sg:pub.10.1038/s41467-019-13534-2
17 sg:pub.10.1038/s41586-018-0184-1
18 sg:pub.10.1038/s41586-018-0274-0
19 sg:pub.10.1038/s41586-019-1381-2
20 sg:pub.10.1134/1.568223
21 schema:datePublished 2021-11-02
22 schema:datePublishedReg 2021-11-02
23 schema:description The proposal of fault-tolerant quantum computations, which promise to dramatically improve the operation of quantum computers and to accelerate the development of the compact hardware for them, is based on topological quantum field theories, which rely on the existence in Nature of physical systems described by a Lagrangian containing a non-Abelian (NA) topological term. These are solid-state systems having two-dimensional electrons, which are coupled to magnetic-flux-quanta vortexes, forming complex particles, known as anyons. Topological quantum computing (TQC) operations thus represent a physical realization of the mathematical operations involving NA representations of a braid group Bn, generated by a set of n localized anyons, which can be braided and fused using a “tweezer” and controlled by a detector. For most of the potential TQC material systems known so far, which are 2D-electron–gas semiconductor structure at high magnetic field and a variety of hybrid superconductor/topological-material heterostructures, the realization of anyon localization versus tweezing and detecting meets serious obstacles, chief among which are the necessity of using current control, i.e., mobile particles, of the TQC operations and high density electron puddles (containing thousands of electrons) to generate a single vortex. Here we demonstrate a novel system, in which these obstacles can be overcome, and in which vortexes are generated by a single electron. This is a ~ 150 nm size many electron InP/GaInP2 self-organized quantum dot, in which molecules, consisting of a few localized anyons, are naturally formed and exist at zero external magnetic field. We used high-spatial-resolution scanning magneto-photoluminescence spectroscopy measurements of a set of the dots having five and six electrons, together with many-body quantum mechanical calculations to demonstrate spontaneous formation of the anyon magneto-electron particles (eν) having fractional charge ν = n/k, where n = 1–4 and k = 3–15 are the number of electrons and vortexes, respectively, arranged in molecular structures having a built-in (internal) magnetic field of 6–12 T. Using direct imaging of the molecular configurations we observed fusion and braiding of eν-anyons under photo-excitation and revealed the possibility of using charge sensing for their control. Our investigations show that InP/GaInP2 anyon-molecule QDs, which have intrinsic transformations of localized eν-anyons compatible with TQC operations and capable of being probed by charge sensing, are very promising for the realization of TQC.
24 schema:genre article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N8a23374f8d8a4f4b865c58f09525a383
28 Ne19391b6da52414dbe8b1351c948f999
29 sg:journal.1045337
30 schema:keywords BN
31 Lagrangian
32 QDs
33 TQC
34 anyons
35 body quantum mechanical calculations
36 braid group Bn
37 braiding
38 calculations
39 charge
40 charge sensing
41 chief
42 compact hardware
43 complex particles
44 computation
45 computer
46 computing operations
47 configuration
48 control
49 current control
50 detector
51 development
52 direct imaging
53 dots
54 electron puddles
55 electrons
56 existence
57 external magnetic field
58 fault-tolerant quantum computation
59 field
60 field theory
61 formation
62 fusion
63 group Bn
64 hardware
65 heterostructures
66 high magnetic fields
67 imaging
68 intrinsic transformation
69 investigation
70 localization
71 magnetic field
72 material system
73 mathematical operations
74 measurements
75 mechanical calculations
76 mobile particles
77 molecular configuration
78 molecular structure
79 molecules
80 nature
81 necessity
82 novel system
83 number
84 number of electrons
85 obstacles
86 operation
87 particles
88 physical realization
89 physical systems
90 possibility
91 proposal
92 puddles
93 quantum computation
94 quantum computer
95 quantum computing operations
96 quantum dots
97 quantum field theory
98 quantum mechanical calculations
99 quantum vortices
100 realization
101 representation
102 self-organized quantum dots
103 semiconductor structures
104 sensing
105 serious obstacle
106 set
107 single electron
108 single vortex
109 solid-state systems
110 spectroscopy measurements
111 spontaneous formation
112 structure
113 system
114 terms
115 theory
116 topological quantum computation
117 topological quantum field theory
118 topological term
119 transformation
120 tweezers
121 tweezing
122 two-dimensional electrons
123 variety
124 vortices
125 schema:name Nano-photoluminescence of natural anyon molecules and topological quantum computation
126 schema:pagination 21440
127 schema:productId N304a612583b54113bbe4906c56464476
128 N32ab100d5c2347f9bba97912ce621c40
129 Nc4050b14f98b4570bdbd0b9da9344a83
130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142327079
131 https://doi.org/10.1038/s41598-021-00859-6
132 schema:sdDatePublished 2022-05-10T10:29
133 schema:sdLicense https://scigraph.springernature.com/explorer/license/
134 schema:sdPublisher N891581d029914e11b1ce8d59671f66df
135 schema:url https://doi.org/10.1038/s41598-021-00859-6
136 sgo:license sg:explorer/license/
137 sgo:sdDataset articles
138 rdf:type schema:ScholarlyArticle
139 N02fa303195664fad9c241c318d4d18e3 rdf:first sg:person.016574600704.55
140 rdf:rest rdf:nil
141 N055f598feeb64953abb5764dc39ef556 rdf:first sg:person.01117445654.56
142 rdf:rest N02fa303195664fad9c241c318d4d18e3
143 N304a612583b54113bbe4906c56464476 schema:name pubmed_id
144 schema:value 34728665
145 rdf:type schema:PropertyValue
146 N32ab100d5c2347f9bba97912ce621c40 schema:name dimensions_id
147 schema:value pub.1142327079
148 rdf:type schema:PropertyValue
149 N71625167e16a4ea98b8d5c9c53a3170c rdf:first sg:person.015546623203.37
150 rdf:rest Na497d262d78146fb907c7c4cb1182877
151 N891581d029914e11b1ce8d59671f66df schema:name Springer Nature - SN SciGraph project
152 rdf:type schema:Organization
153 N8a23374f8d8a4f4b865c58f09525a383 schema:volumeNumber 11
154 rdf:type schema:PublicationVolume
155 Na497d262d78146fb907c7c4cb1182877 rdf:first sg:person.014231026275.34
156 rdf:rest N055f598feeb64953abb5764dc39ef556
157 Nc4050b14f98b4570bdbd0b9da9344a83 schema:name doi
158 schema:value 10.1038/s41598-021-00859-6
159 rdf:type schema:PropertyValue
160 Nc69fbd7c7a7f4c20adf5fdef01bdc56d rdf:first sg:person.0762075347.53
161 rdf:rest Ncc173157de854bad9d0791d8cda98857
162 Ncc173157de854bad9d0791d8cda98857 rdf:first sg:person.011763340603.51
163 rdf:rest N71625167e16a4ea98b8d5c9c53a3170c
164 Ne19391b6da52414dbe8b1351c948f999 schema:issueNumber 1
165 rdf:type schema:PublicationIssue
166 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
167 schema:name Physical Sciences
168 rdf:type schema:DefinedTerm
169 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
170 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
171 rdf:type schema:DefinedTerm
172 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
173 schema:name Chemical Sciences
174 rdf:type schema:DefinedTerm
175 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
176 schema:name Physical Chemistry (incl. Structural)
177 rdf:type schema:DefinedTerm
178 sg:grant.8413865 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-021-00859-6
179 rdf:type schema:MonetaryGrant
180 sg:grant.8541182 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-021-00859-6
181 rdf:type schema:MonetaryGrant
182 sg:journal.1045337 schema:issn 2045-2322
183 schema:name Scientific Reports
184 schema:publisher Springer Nature
185 rdf:type schema:Periodical
186 sg:person.01117445654.56 schema:affiliation grid-institutes:grid.131063.6
187 schema:familyName Snider
188 schema:givenName Gregory L.
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117445654.56
190 rdf:type schema:Person
191 sg:person.011763340603.51 schema:affiliation grid-institutes:grid.423485.c
192 schema:familyName Lebedev
193 schema:givenName Dmitrii V.
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011763340603.51
195 rdf:type schema:Person
196 sg:person.014231026275.34 schema:affiliation grid-institutes:grid.131063.6
197 schema:familyName Orlov
198 schema:givenName Alexei O.
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014231026275.34
200 rdf:type schema:Person
201 sg:person.015546623203.37 schema:affiliation grid-institutes:grid.423485.c
202 schema:familyName Vlasov
203 schema:givenName Alexei S.
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015546623203.37
205 rdf:type schema:Person
206 sg:person.016574600704.55 schema:affiliation grid-institutes:grid.450307.5
207 schema:familyName Blundell
208 schema:givenName Steven A.
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016574600704.55
210 rdf:type schema:Person
211 sg:person.0762075347.53 schema:affiliation grid-institutes:grid.131063.6
212 schema:familyName Mintairov
213 schema:givenName Alexander M.
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762075347.53
215 rdf:type schema:Person
216 sg:pub.10.1007/978-3-642-61640-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036738090
217 https://doi.org/10.1007/978-3-642-61640-2
218 rdf:type schema:CreativeWork
219 sg:pub.10.1007/978-3-642-72002-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052039532
220 https://doi.org/10.1007/978-3-642-72002-4
221 rdf:type schema:CreativeWork
222 sg:pub.10.1038/nature06855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027351129
223 https://doi.org/10.1038/nature06855
224 rdf:type schema:CreativeWork
225 sg:pub.10.1038/nature08812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026793563
226 https://doi.org/10.1038/nature08812
227 rdf:type schema:CreativeWork
228 sg:pub.10.1038/nature09680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025159766
229 https://doi.org/10.1038/nature09680
230 rdf:type schema:CreativeWork
231 sg:pub.10.1038/nature13171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014316438
232 https://doi.org/10.1038/nature13171
233 rdf:type schema:CreativeWork
234 sg:pub.10.1038/nature25766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101019938
235 https://doi.org/10.1038/nature25766
236 rdf:type schema:CreativeWork
237 sg:pub.10.1038/ncomms9748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035863240
238 https://doi.org/10.1038/ncomms9748
239 rdf:type schema:CreativeWork
240 sg:pub.10.1038/nnano.2014.216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027074944
241 https://doi.org/10.1038/nnano.2014.216
242 rdf:type schema:CreativeWork
243 sg:pub.10.1038/npjqi.2015.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003791534
244 https://doi.org/10.1038/npjqi.2015.1
245 rdf:type schema:CreativeWork
246 sg:pub.10.1038/s41467-019-13534-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123013260
247 https://doi.org/10.1038/s41467-019-13534-2
248 rdf:type schema:CreativeWork
249 sg:pub.10.1038/s41586-018-0184-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104306671
250 https://doi.org/10.1038/s41586-018-0184-1
251 rdf:type schema:CreativeWork
252 sg:pub.10.1038/s41586-018-0274-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105348580
253 https://doi.org/10.1038/s41586-018-0274-0
254 rdf:type schema:CreativeWork
255 sg:pub.10.1038/s41586-019-1381-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1118042064
256 https://doi.org/10.1038/s41586-019-1381-2
257 rdf:type schema:CreativeWork
258 sg:pub.10.1134/1.568223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044367790
259 https://doi.org/10.1134/1.568223
260 rdf:type schema:CreativeWork
261 grid-institutes:grid.131063.6 schema:alternateName Electrical Engineering, University of Notre Dame, 46556, Notre Dame, IN, USA
262 schema:name Electrical Engineering, University of Notre Dame, 46556, Notre Dame, IN, USA
263 Ioffe Institute, 194021, Saint Petersburg, Russia
264 rdf:type schema:Organization
265 grid-institutes:grid.423485.c schema:alternateName Ioffe Institute, 194021, Saint Petersburg, Russia
266 schema:name Ioffe Institute, 194021, Saint Petersburg, Russia
267 rdf:type schema:Organization
268 grid-institutes:grid.450307.5 schema:alternateName University Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000, Grenoble, France
269 schema:name University Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000, Grenoble, France
270 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...