Metabolomic profiling of Burkholderia cenocepacia in synthetic cystic fibrosis sputum medium reveals nutrient environment-specific production of virulence factors View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-11-01

AUTHORS

Olakunle A. Jaiyesimi, Andrew C. McAvoy, David N. Fogg, Neha Garg

ABSTRACT

Infections by Burkholderia cenocepacia lead to life-threatening disease in immunocompromised individuals, including those living with cystic fibrosis (CF). While genetic variation in various B. cenocepacia strains has been reported, it remains unclear how the chemical environment of CF lung influences the production of small molecule virulence factors by these strains. Here we compare metabolomes of three clinical B. cenocepacia strains in synthetic CF sputum medium (SCFM2) and in a routine laboratory medium (LB), in the presence and absence of the antibiotic trimethoprim. Using a mass spectrometry-based untargeted metabolomics approach, we identify several compound classes which are differentially produced in SCFM2 compared to LB media, including siderophores, antimicrobials, quorum sensing signals, and various lipids. Furthermore, we describe that specific metabolites are induced in the presence of the antibiotic trimethoprim only in SCFM2 when compared to LB. Herein, C13-acyl-homoserine lactone, a quorum sensing signal previously not known to be produced by B. cenocepacia as well as pyochelin-type siderophores were exclusively detected during growth in SCFM2 in the presence of trimethoprim. The comparative metabolomics approach described in this study provides insight into environment-dependent production of secondary metabolites by B. cenocepacia strains and suggests future work which could identify personalized strain-specific regulatory mechanisms involved in production of secondary metabolites. Investigations into whether antibiotics with different mechanisms of action induce similar metabolic alterations will inform development of combination treatments aimed at effective clearance of Burkholderia spp. pathogens. More... »

PAGES

21419

References to SciGraph publications

  • 2019-04-03. Bacterial quorum sensing in complex and dynamically changing environments in NATURE REVIEWS MICROBIOLOGY
  • 2009-09-17. Reciprocal regulation by the CepIR and CciIR quorum sensing systems in Burkholderia cenocepacia in BMC GENOMICS
  • 2020-08-24. Feature-based molecular networking in the GNPS analysis environment in NATURE METHODS
  • 2014-02-21. Mangotoxin production of Pseudomonas syringae pv. syringae is regulated by MgoA in BMC MICROBIOLOGY
  • 2017-06-06. Virulence traits associated with Burkholderia cenocepacia ST856 epidemic strain isolated from cystic fibrosis patients in ANTIMICROBIAL RESISTANCE & INFECTION CONTROL
  • 2021-02-01. Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions in NATURE REVIEWS MICROBIOLOGY
  • 2016-02-01. Fragmentation trees reloaded in JOURNAL OF CHEMINFORMATICS
  • 2013-03-31. A cell-cell communication signal integrates quorum sensing and stress response in NATURE CHEMICAL BIOLOGY
  • 2014-12-16. A Winogradsky-based culture system shows an association between microbial fermentation and cystic fibrosis exacerbation in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2019-03-18. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information in NATURE METHODS
  • 2020-01-01. Mass spectrometry searches using MASST in NATURE BIOTECHNOLOGY
  • 2016-11-04. ClassyFire: automated chemical classification with a comprehensive, computable taxonomy in JOURNAL OF CHEMINFORMATICS
  • 2018-03-30. Biosynthesis of fragin is controlled by a novel quorum sensing signal in NATURE COMMUNICATIONS
  • 2008-09-19. Gene expression changes linked to antimicrobial resistance, oxidative stress, iron depletion and retained motility are observed when Burkholderia cenocepaciagrows in cystic fibrosis sputum in BMC INFECTIOUS DISEASES
  • 2004-08. The stereoisomers of pyochelin, a siderophore of Pseudomonas aeruginosa in BIOMETALS
  • 2014-05-09. Cell Envelope Phospholipid Composition of Burkholderia multivorans in CURRENT MICROBIOLOGY
  • 2020-11-23. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra in NATURE BIOTECHNOLOGY
  • 2011-11-13. Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes in NATURE GENETICS
  • 2010-07-23. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data in BMC BIOINFORMATICS
  • 2017-11-16. Progress in and promise of bacterial quorum sensing research in NATURE
  • 2019-07-29. Preparation of Monoacylglycerol Derivatives from Indonesian Edible Oil and Their Antimicrobial Assay against Staphylococcus aureus and Escherichia coli in SCIENTIFIC REPORTS
  • 2021-03-11. Structural insights into phosphatidylethanolamine formation in bacterial membrane biogenesis in SCIENTIFIC REPORTS
  • 2005-01-10. The multifarious, multireplicon Burkholderia cepacia complex in NATURE REVIEWS MICROBIOLOGY
  • 2013-11-09. Genome-guided discovery of diverse natural products from Burkholderia sp. in JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-021-00421-4

    DOI

    http://dx.doi.org/10.1038/s41598-021-00421-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1142310134

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/34725378


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Anti-Bacterial Agents", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacterial Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Burkholderia Infections", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Burkholderia cenocepacia", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromatography, High Pressure Liquid", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Culture Media", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cystic Fibrosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lipids", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metabolome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metabolomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microbial Sensitivity Tests", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quorum Sensing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sputum", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Trimethoprim", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Virulence Factors", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, 30332-2000, Atlanta, GA, USA", 
              "id": "http://www.grid.ac/institutes/grid.213917.f", 
              "name": [
                "School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, 30332-2000, Atlanta, GA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jaiyesimi", 
            "givenName": "Olakunle A.", 
            "id": "sg:person.010517554524.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010517554524.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, 30332-2000, Atlanta, GA, USA", 
              "id": "http://www.grid.ac/institutes/grid.213917.f", 
              "name": [
                "School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, 30332-2000, Atlanta, GA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "McAvoy", 
            "givenName": "Andrew C.", 
            "id": "sg:person.016542667747.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016542667747.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, 30332-2000, Atlanta, GA, USA", 
              "id": "http://www.grid.ac/institutes/grid.213917.f", 
              "name": [
                "School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, 30332-2000, Atlanta, GA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fogg", 
            "givenName": "David N.", 
            "id": "sg:person.013772235601.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013772235601.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Microbial Dynamics and Infection, Georgia Institute of Technology, 311 Ferst Drive, ES&T, 30332, Atlanta, GA, USA", 
              "id": "http://www.grid.ac/institutes/grid.213917.f", 
              "name": [
                "School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, 30332-2000, Atlanta, GA, USA", 
                "Center for Microbial Dynamics and Infection, Georgia Institute of Technology, 311 Ferst Drive, ES&T, 30332, Atlanta, GA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Garg", 
            "givenName": "Neha", 
            "id": "sg:person.07541460031.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07541460031.01"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s41598-019-47373-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1119955106", 
              "https://doi.org/10.1038/s41598-019-47373-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41579-020-00508-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1135023505", 
              "https://doi.org/10.1038/s41579-020-00508-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2334-8-121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021645668", 
              "https://doi.org/10.1186/1471-2334-8-121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41587-019-0375-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123770973", 
              "https://doi.org/10.1038/s41587-019-0375-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-395", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044581026", 
              "https://doi.org/10.1186/1471-2105-11-395"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.997", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018041741", 
              "https://doi.org/10.1038/ng.997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13321-016-0174-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027638027", 
              "https://doi.org/10.1186/s13321-016-0174-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-03690-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101846506", 
              "https://doi.org/10.1038/s41467-018-03690-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature24624", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092688406", 
              "https://doi.org/10.1038/nature24624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2014.234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009069778", 
              "https://doi.org/10.1038/ismej.2014.234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13321-016-0116-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011550150", 
              "https://doi.org/10.1186/s13321-016-0116-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00284-014-0599-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043711251", 
              "https://doi.org/10.1007/s00284-014-0599-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:biom.0000029437.42633.73", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000007949", 
              "https://doi.org/10.1023/b:biom.0000029437.42633.73"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41587-020-0740-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1132841620", 
              "https://doi.org/10.1038/s41587-020-0740-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41579-019-0186-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113182221", 
              "https://doi.org/10.1038/s41579-019-0186-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41592-020-0933-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1130293863", 
              "https://doi.org/10.1038/s41592-020-0933-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10295-013-1376-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042778295", 
              "https://doi.org/10.1007/s10295-013-1376-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-021-85195-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1136296866", 
              "https://doi.org/10.1038/s41598-021-85195-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio.1225", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008630844", 
              "https://doi.org/10.1038/nchembio.1225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41592-019-0344-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112858205", 
              "https://doi.org/10.1038/s41592-019-0344-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2180-14-46", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038020282", 
              "https://doi.org/10.1186/1471-2180-14-46"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042690574", 
              "https://doi.org/10.1038/nrmicro1085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-10-441", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048919972", 
              "https://doi.org/10.1186/1471-2164-10-441"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13756-017-0215-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085900820", 
              "https://doi.org/10.1186/s13756-017-0215-y"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-11-01", 
        "datePublishedReg": "2021-11-01", 
        "description": "Infections by Burkholderia cenocepacia lead to life-threatening disease in immunocompromised individuals, including those living with cystic fibrosis (CF). While genetic variation in various B. cenocepacia strains has been reported, it remains unclear how the chemical environment of CF lung influences the production of small molecule virulence factors by these strains. Here we compare metabolomes of three clinical B. cenocepacia strains in synthetic CF sputum medium (SCFM2) and in a routine laboratory medium (LB), in the presence and absence of the antibiotic trimethoprim. Using a mass spectrometry-based untargeted metabolomics approach, we identify several compound classes which are differentially produced in SCFM2 compared to LB media, including siderophores, antimicrobials, quorum sensing signals, and various lipids. Furthermore, we describe that specific metabolites are induced in the presence of the antibiotic trimethoprim only in SCFM2 when compared to LB. Herein, C13-acyl-homoserine lactone, a quorum sensing signal previously not known to be produced by B. cenocepacia as well as pyochelin-type siderophores were exclusively detected during growth in SCFM2 in the presence of trimethoprim. The comparative metabolomics approach described in this study provides insight into environment-dependent production of secondary metabolites by B. cenocepacia strains and suggests future work which could identify personalized strain-specific regulatory mechanisms involved in production of secondary metabolites. Investigations into whether antibiotics with different mechanisms of\u00a0action induce similar metabolic alterations will inform development of combination treatments aimed at effective clearance of Burkholderia spp. pathogens.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-021-00421-4", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "keywords": [
          "cystic fibrosis", 
          "B. cenocepacia", 
          "virulence factors", 
          "life-threatening disease", 
          "similar metabolic alterations", 
          "synthetic cystic fibrosis sputum medium", 
          "metabolomics approach", 
          "mass spectrometry-based untargeted metabolomics approach", 
          "sputum medium", 
          "immunocompromised individuals", 
          "B. cenocepacia strains", 
          "combination treatment", 
          "metabolic alterations", 
          "CF lung", 
          "routine laboratory media", 
          "effective clearance", 
          "untargeted metabolomics approach", 
          "metabolomic profiling", 
          "trimethoprim", 
          "presence of trimethoprim", 
          "metabolites", 
          "specific metabolites", 
          "laboratory media", 
          "cenocepacia", 
          "comparative metabolomics approach", 
          "Burkholderia cenocepacia", 
          "small molecule virulence factors", 
          "different mechanisms", 
          "fibrosis", 
          "regulatory mechanisms", 
          "lung", 
          "infection", 
          "antibiotic trimethoprim", 
          "disease", 
          "clearance", 
          "antibiotics", 
          "factors", 
          "treatment", 
          "antimicrobials", 
          "alterations", 
          "presence", 
          "lipids", 
          "strains", 
          "metabolome", 
          "mechanism", 
          "individuals", 
          "secondary metabolites", 
          "Burkholderia spp", 
          "absence", 
          "genetic variation", 
          "production", 
          "study", 
          "action", 
          "profiling", 
          "spp", 
          "medium", 
          "development", 
          "future work", 
          "lead", 
          "investigation", 
          "synthetic CF sputum medium", 
          "compound classes", 
          "Herein", 
          "growth", 
          "quorum sensing signals", 
          "approach", 
          "homoserine lactone", 
          "lactone", 
          "signals", 
          "insights", 
          "siderophores", 
          "LB medium", 
          "variation", 
          "class", 
          "environment", 
          "work", 
          "sensing signals", 
          "chemical environment"
        ], 
        "name": "Metabolomic profiling of Burkholderia cenocepacia in synthetic cystic fibrosis sputum medium reveals nutrient environment-specific production of virulence factors", 
        "pagination": "21419", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1142310134"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-021-00421-4"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "34725378"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-021-00421-4", 
          "https://app.dimensions.ai/details/publication/pub.1142310134"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_885.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-021-00421-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-00421-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-00421-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-00421-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-021-00421-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    321 TRIPLES      21 PREDICATES      143 URIs      111 LITERALS      23 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-021-00421-4 schema:about N015d38c278874bf99a3167ab600d7ce7
    2 N1e9c5406cb86428b8d5782d467bd9940
    3 N2aba2e8d3d204213a30986cfe074403a
    4 N3df1509ee43347d68b93d5ac4f22da9e
    5 N3e5da836252b471697860da498c1a140
    6 N409e08f56be841b6b008c2f32c0018a3
    7 N432930b059364f8ab46ea87263a84dfd
    8 N632cd852618245d186b8df3340fcc447
    9 N7a55627150a9420cadfa28832327588f
    10 N9480b9c8b8934903befed8a808201f68
    11 N9ce79ec285804c60ae0992e6b527fe31
    12 Naaabb24efc4847c3b0561185960e10e1
    13 Nb7fd421635d54b5faa35acfc7c5b1218
    14 Nd303d69c207941c0ac06dd5c5432bd95
    15 Nd85720cc9d274a9691bb3183d9ac8a3f
    16 Ne84f52d2b9df48d287c2cd49d3e3bbb5
    17 anzsrc-for:11
    18 anzsrc-for:1108
    19 schema:author N665616dcad694ba7be64c1a28581c7f5
    20 schema:citation sg:pub.10.1007/s00284-014-0599-3
    21 sg:pub.10.1007/s10295-013-1376-1
    22 sg:pub.10.1023/b:biom.0000029437.42633.73
    23 sg:pub.10.1038/ismej.2014.234
    24 sg:pub.10.1038/nature24624
    25 sg:pub.10.1038/nchembio.1225
    26 sg:pub.10.1038/ng.997
    27 sg:pub.10.1038/nrmicro1085
    28 sg:pub.10.1038/s41467-018-03690-2
    29 sg:pub.10.1038/s41579-019-0186-5
    30 sg:pub.10.1038/s41579-020-00508-1
    31 sg:pub.10.1038/s41587-019-0375-9
    32 sg:pub.10.1038/s41587-020-0740-8
    33 sg:pub.10.1038/s41592-019-0344-8
    34 sg:pub.10.1038/s41592-020-0933-6
    35 sg:pub.10.1038/s41598-019-47373-4
    36 sg:pub.10.1038/s41598-021-85195-5
    37 sg:pub.10.1186/1471-2105-11-395
    38 sg:pub.10.1186/1471-2164-10-441
    39 sg:pub.10.1186/1471-2180-14-46
    40 sg:pub.10.1186/1471-2334-8-121
    41 sg:pub.10.1186/s13321-016-0116-8
    42 sg:pub.10.1186/s13321-016-0174-y
    43 sg:pub.10.1186/s13756-017-0215-y
    44 schema:datePublished 2021-11-01
    45 schema:datePublishedReg 2021-11-01
    46 schema:description Infections by Burkholderia cenocepacia lead to life-threatening disease in immunocompromised individuals, including those living with cystic fibrosis (CF). While genetic variation in various B. cenocepacia strains has been reported, it remains unclear how the chemical environment of CF lung influences the production of small molecule virulence factors by these strains. Here we compare metabolomes of three clinical B. cenocepacia strains in synthetic CF sputum medium (SCFM2) and in a routine laboratory medium (LB), in the presence and absence of the antibiotic trimethoprim. Using a mass spectrometry-based untargeted metabolomics approach, we identify several compound classes which are differentially produced in SCFM2 compared to LB media, including siderophores, antimicrobials, quorum sensing signals, and various lipids. Furthermore, we describe that specific metabolites are induced in the presence of the antibiotic trimethoprim only in SCFM2 when compared to LB. Herein, C13-acyl-homoserine lactone, a quorum sensing signal previously not known to be produced by B. cenocepacia as well as pyochelin-type siderophores were exclusively detected during growth in SCFM2 in the presence of trimethoprim. The comparative metabolomics approach described in this study provides insight into environment-dependent production of secondary metabolites by B. cenocepacia strains and suggests future work which could identify personalized strain-specific regulatory mechanisms involved in production of secondary metabolites. Investigations into whether antibiotics with different mechanisms of action induce similar metabolic alterations will inform development of combination treatments aimed at effective clearance of Burkholderia spp. pathogens.
    47 schema:genre article
    48 schema:isAccessibleForFree true
    49 schema:isPartOf N0c7f687b251040be9be516f269414b40
    50 Nc8bc1c455c3240819f93b47f1fbb60bf
    51 sg:journal.1045337
    52 schema:keywords B. cenocepacia
    53 B. cenocepacia strains
    54 Burkholderia cenocepacia
    55 Burkholderia spp
    56 CF lung
    57 Herein
    58 LB medium
    59 absence
    60 action
    61 alterations
    62 antibiotic trimethoprim
    63 antibiotics
    64 antimicrobials
    65 approach
    66 cenocepacia
    67 chemical environment
    68 class
    69 clearance
    70 combination treatment
    71 comparative metabolomics approach
    72 compound classes
    73 cystic fibrosis
    74 development
    75 different mechanisms
    76 disease
    77 effective clearance
    78 environment
    79 factors
    80 fibrosis
    81 future work
    82 genetic variation
    83 growth
    84 homoserine lactone
    85 immunocompromised individuals
    86 individuals
    87 infection
    88 insights
    89 investigation
    90 laboratory media
    91 lactone
    92 lead
    93 life-threatening disease
    94 lipids
    95 lung
    96 mass spectrometry-based untargeted metabolomics approach
    97 mechanism
    98 medium
    99 metabolic alterations
    100 metabolites
    101 metabolome
    102 metabolomic profiling
    103 metabolomics approach
    104 presence
    105 presence of trimethoprim
    106 production
    107 profiling
    108 quorum sensing signals
    109 regulatory mechanisms
    110 routine laboratory media
    111 secondary metabolites
    112 sensing signals
    113 siderophores
    114 signals
    115 similar metabolic alterations
    116 small molecule virulence factors
    117 specific metabolites
    118 spp
    119 sputum medium
    120 strains
    121 study
    122 synthetic CF sputum medium
    123 synthetic cystic fibrosis sputum medium
    124 treatment
    125 trimethoprim
    126 untargeted metabolomics approach
    127 variation
    128 virulence factors
    129 work
    130 schema:name Metabolomic profiling of Burkholderia cenocepacia in synthetic cystic fibrosis sputum medium reveals nutrient environment-specific production of virulence factors
    131 schema:pagination 21419
    132 schema:productId N04d506e5e01043c68348bbe48de28dc3
    133 N47745f165a5b4097a76fa00882eb7f45
    134 N799ac815468a457091e5c74216cac4d6
    135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142310134
    136 https://doi.org/10.1038/s41598-021-00421-4
    137 schema:sdDatePublished 2022-10-01T06:48
    138 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    139 schema:sdPublisher N8ebec928af1c4d82a0904165e91dc24a
    140 schema:url https://doi.org/10.1038/s41598-021-00421-4
    141 sgo:license sg:explorer/license/
    142 sgo:sdDataset articles
    143 rdf:type schema:ScholarlyArticle
    144 N015d38c278874bf99a3167ab600d7ce7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Quorum Sensing
    146 rdf:type schema:DefinedTerm
    147 N04d506e5e01043c68348bbe48de28dc3 schema:name pubmed_id
    148 schema:value 34725378
    149 rdf:type schema:PropertyValue
    150 N0c7f687b251040be9be516f269414b40 schema:issueNumber 1
    151 rdf:type schema:PublicationIssue
    152 N1e9c5406cb86428b8d5782d467bd9940 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Anti-Bacterial Agents
    154 rdf:type schema:DefinedTerm
    155 N2aba2e8d3d204213a30986cfe074403a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Humans
    157 rdf:type schema:DefinedTerm
    158 N3df1509ee43347d68b93d5ac4f22da9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Virulence Factors
    160 rdf:type schema:DefinedTerm
    161 N3e5da836252b471697860da498c1a140 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Sputum
    163 rdf:type schema:DefinedTerm
    164 N409e08f56be841b6b008c2f32c0018a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Culture Media
    166 rdf:type schema:DefinedTerm
    167 N432930b059364f8ab46ea87263a84dfd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Burkholderia Infections
    169 rdf:type schema:DefinedTerm
    170 N47745f165a5b4097a76fa00882eb7f45 schema:name dimensions_id
    171 schema:value pub.1142310134
    172 rdf:type schema:PropertyValue
    173 N632cd852618245d186b8df3340fcc447 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Microbial Sensitivity Tests
    175 rdf:type schema:DefinedTerm
    176 N665616dcad694ba7be64c1a28581c7f5 rdf:first sg:person.010517554524.09
    177 rdf:rest N878975524a214128b868dd08acca378b
    178 N799ac815468a457091e5c74216cac4d6 schema:name doi
    179 schema:value 10.1038/s41598-021-00421-4
    180 rdf:type schema:PropertyValue
    181 N7a55627150a9420cadfa28832327588f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Bacterial Proteins
    183 rdf:type schema:DefinedTerm
    184 N878975524a214128b868dd08acca378b rdf:first sg:person.016542667747.63
    185 rdf:rest Ne20e2b19e2c049b68b003fd9694b569b
    186 N8ebec928af1c4d82a0904165e91dc24a schema:name Springer Nature - SN SciGraph project
    187 rdf:type schema:Organization
    188 N9480b9c8b8934903befed8a808201f68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    189 schema:name Lipids
    190 rdf:type schema:DefinedTerm
    191 N9ce79ec285804c60ae0992e6b527fe31 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    192 schema:name Burkholderia cenocepacia
    193 rdf:type schema:DefinedTerm
    194 Naaabb24efc4847c3b0561185960e10e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    195 schema:name Metabolomics
    196 rdf:type schema:DefinedTerm
    197 Nb7fd421635d54b5faa35acfc7c5b1218 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    198 schema:name Trimethoprim
    199 rdf:type schema:DefinedTerm
    200 Nc8bc1c455c3240819f93b47f1fbb60bf schema:volumeNumber 11
    201 rdf:type schema:PublicationVolume
    202 Nd303d69c207941c0ac06dd5c5432bd95 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    203 schema:name Cystic Fibrosis
    204 rdf:type schema:DefinedTerm
    205 Nd85720cc9d274a9691bb3183d9ac8a3f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    206 schema:name Metabolome
    207 rdf:type schema:DefinedTerm
    208 Ne20e2b19e2c049b68b003fd9694b569b rdf:first sg:person.013772235601.66
    209 rdf:rest Ned0bdf59baea4380af695329a3ee02bf
    210 Ne84f52d2b9df48d287c2cd49d3e3bbb5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    211 schema:name Chromatography, High Pressure Liquid
    212 rdf:type schema:DefinedTerm
    213 Ned0bdf59baea4380af695329a3ee02bf rdf:first sg:person.07541460031.01
    214 rdf:rest rdf:nil
    215 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    216 schema:name Medical and Health Sciences
    217 rdf:type schema:DefinedTerm
    218 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
    219 schema:name Medical Microbiology
    220 rdf:type schema:DefinedTerm
    221 sg:journal.1045337 schema:issn 2045-2322
    222 schema:name Scientific Reports
    223 schema:publisher Springer Nature
    224 rdf:type schema:Periodical
    225 sg:person.010517554524.09 schema:affiliation grid-institutes:grid.213917.f
    226 schema:familyName Jaiyesimi
    227 schema:givenName Olakunle A.
    228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010517554524.09
    229 rdf:type schema:Person
    230 sg:person.013772235601.66 schema:affiliation grid-institutes:grid.213917.f
    231 schema:familyName Fogg
    232 schema:givenName David N.
    233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013772235601.66
    234 rdf:type schema:Person
    235 sg:person.016542667747.63 schema:affiliation grid-institutes:grid.213917.f
    236 schema:familyName McAvoy
    237 schema:givenName Andrew C.
    238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016542667747.63
    239 rdf:type schema:Person
    240 sg:person.07541460031.01 schema:affiliation grid-institutes:grid.213917.f
    241 schema:familyName Garg
    242 schema:givenName Neha
    243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07541460031.01
    244 rdf:type schema:Person
    245 sg:pub.10.1007/s00284-014-0599-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043711251
    246 https://doi.org/10.1007/s00284-014-0599-3
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1007/s10295-013-1376-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042778295
    249 https://doi.org/10.1007/s10295-013-1376-1
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1023/b:biom.0000029437.42633.73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000007949
    252 https://doi.org/10.1023/b:biom.0000029437.42633.73
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/ismej.2014.234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009069778
    255 https://doi.org/10.1038/ismej.2014.234
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/nature24624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092688406
    258 https://doi.org/10.1038/nature24624
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/nchembio.1225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008630844
    261 https://doi.org/10.1038/nchembio.1225
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1038/ng.997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018041741
    264 https://doi.org/10.1038/ng.997
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1038/nrmicro1085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042690574
    267 https://doi.org/10.1038/nrmicro1085
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1038/s41467-018-03690-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101846506
    270 https://doi.org/10.1038/s41467-018-03690-2
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1038/s41579-019-0186-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113182221
    273 https://doi.org/10.1038/s41579-019-0186-5
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1038/s41579-020-00508-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135023505
    276 https://doi.org/10.1038/s41579-020-00508-1
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1038/s41587-019-0375-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123770973
    279 https://doi.org/10.1038/s41587-019-0375-9
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1038/s41587-020-0740-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132841620
    282 https://doi.org/10.1038/s41587-020-0740-8
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1038/s41592-019-0344-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112858205
    285 https://doi.org/10.1038/s41592-019-0344-8
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1038/s41592-020-0933-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130293863
    288 https://doi.org/10.1038/s41592-020-0933-6
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1038/s41598-019-47373-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1119955106
    291 https://doi.org/10.1038/s41598-019-47373-4
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1038/s41598-021-85195-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1136296866
    294 https://doi.org/10.1038/s41598-021-85195-5
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1186/1471-2105-11-395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044581026
    297 https://doi.org/10.1186/1471-2105-11-395
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1186/1471-2164-10-441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048919972
    300 https://doi.org/10.1186/1471-2164-10-441
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1186/1471-2180-14-46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038020282
    303 https://doi.org/10.1186/1471-2180-14-46
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1186/1471-2334-8-121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021645668
    306 https://doi.org/10.1186/1471-2334-8-121
    307 rdf:type schema:CreativeWork
    308 sg:pub.10.1186/s13321-016-0116-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011550150
    309 https://doi.org/10.1186/s13321-016-0116-8
    310 rdf:type schema:CreativeWork
    311 sg:pub.10.1186/s13321-016-0174-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1027638027
    312 https://doi.org/10.1186/s13321-016-0174-y
    313 rdf:type schema:CreativeWork
    314 sg:pub.10.1186/s13756-017-0215-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1085900820
    315 https://doi.org/10.1186/s13756-017-0215-y
    316 rdf:type schema:CreativeWork
    317 grid-institutes:grid.213917.f schema:alternateName Center for Microbial Dynamics and Infection, Georgia Institute of Technology, 311 Ferst Drive, ES&T, 30332, Atlanta, GA, USA
    318 School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, 30332-2000, Atlanta, GA, USA
    319 schema:name Center for Microbial Dynamics and Infection, Georgia Institute of Technology, 311 Ferst Drive, ES&T, 30332, Atlanta, GA, USA
    320 School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, 30332-2000, Atlanta, GA, USA
    321 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...