Lies, Gosh Darn Lies, and not enough good statistics: why epidemic model parameter estimation fails View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-01-11

AUTHORS

Daniel E. Platt, Laxmi Parida, Pierre Zalloua

ABSTRACT

We sought to investigate whether epidemiological parameters that define epidemic models could be determined from the epidemic trajectory of infections, recovery, and hospitalizations prior to peak, and also to evaluate the comparability of data between jurisdictions reporting their statistics. We found that, analytically, the pre-peak growth of an epidemic underdetermines the model variates, and that the rate limiting variables are dominated by the exponentially expanding eigenmode of their equations. The variates quickly converge to the ratio of eigenvector components of the positive growth mode, which determines the doubling time. Without a sound epidemiological study framework, measurements of infection rates and other parameters are highly corrupted by uneven testing rates, uneven counting, and under reporting of relevant values. We argue that structured experiments must be performed to estimate these parameters in order to perform genetic association studies, or to construct viable models accurately predicting critical quantities such as hospitalization loads. More... »

PAGES

408

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-020-79745-6

DOI

http://dx.doi.org/10.1038/s41598-020-79745-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1134477773

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/33432032


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Computational Genomics, IBM T. J. Watson Research Center, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "Computational Genomics, IBM T. J. Watson Research Center, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Platt", 
        "givenName": "Daniel E.", 
        "id": "sg:person.01332106363.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332106363.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computational Genomics, IBM T. J. Watson Research Center, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "Computational Genomics, IBM T. J. Watson Research Center, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parida", 
        "givenName": "Laxmi", 
        "id": "sg:person.01336557015.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336557015.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Medicine, University of Balamand, P.O. Box 33, Amioun, Lebanon", 
          "id": "http://www.grid.ac/institutes/grid.33070.37", 
          "name": [
            "TH Chan Harvard School of Public Health, Harvard University, Cambridge, USA", 
            "School of Medicine, University of Balamand, P.O. Box 33, Amioun, Lebanon"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zalloua", 
        "givenName": "Pierre", 
        "id": "sg:person.01270122124.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270122124.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41591-020-0962-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1128492568", 
          "https://doi.org/10.1038/s41591-020-0962-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/033073a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028590845", 
          "https://doi.org/10.1038/033073a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11427-020-1661-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1125484154", 
          "https://doi.org/10.1007/s11427-020-1661-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4939-2438-7_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019538325", 
          "https://doi.org/10.1007/978-1-4939-2438-7_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41591-020-0820-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1125686004", 
          "https://doi.org/10.1038/s41591-020-0820-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41567-020-0921-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1127868256", 
          "https://doi.org/10.1038/s41567-020-0921-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-020-2179-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1125975630", 
          "https://doi.org/10.1038/s41586-020-2179-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11538-020-00791-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1130204554", 
          "https://doi.org/10.1007/s11538-020-00791-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12874-020-01081-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1129556585", 
          "https://doi.org/10.1186/s12874-020-01081-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41591-020-0869-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1126655280", 
          "https://doi.org/10.1038/s41591-020-0869-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-01-11", 
    "datePublishedReg": "2021-01-11", 
    "description": "We sought to investigate whether epidemiological parameters that define epidemic models could be determined from the epidemic trajectory of infections, recovery, and hospitalizations prior to peak, and also to evaluate the comparability of data between jurisdictions reporting their statistics. We found that, analytically, the pre-peak growth of an epidemic underdetermines the model variates, and that the rate limiting variables are dominated by the exponentially expanding eigenmode of their equations. The variates quickly converge to the ratio of eigenvector components of the positive growth mode, which determines the doubling time. Without a sound epidemiological study framework, measurements of infection rates and other parameters are highly corrupted by uneven testing rates, uneven counting, and under reporting of relevant values. We argue that structured experiments must be performed to estimate these parameters in order to perform genetic association studies, or to construct viable models accurately predicting critical quantities such as hospitalization loads.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-020-79745-6", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "model parameter estimation", 
      "parameter estimation", 
      "epidemic model", 
      "eigenvector components", 
      "critical quantities", 
      "good statistics", 
      "variates", 
      "epidemic trajectories", 
      "statistics", 
      "viable model", 
      "equations", 
      "parameters", 
      "epidemiological parameters", 
      "eigenmodes", 
      "relevant values", 
      "genetic association studies", 
      "model", 
      "estimation", 
      "growth mode", 
      "trajectories", 
      "variables", 
      "quantity", 
      "framework", 
      "lies", 
      "order", 
      "comparability of data", 
      "mode", 
      "measurements", 
      "experiments", 
      "values", 
      "counting", 
      "peak", 
      "time", 
      "data", 
      "association studies", 
      "components", 
      "load", 
      "ratio", 
      "rate", 
      "epidemic", 
      "study", 
      "comparability", 
      "growth", 
      "darn", 
      "study framework", 
      "recovery", 
      "infection rate", 
      "reporting", 
      "testing rates", 
      "jurisdictions", 
      "infection", 
      "hospitalization"
    ], 
    "name": "Lies, Gosh Darn Lies, and not enough good statistics: why epidemic model parameter estimation fails", 
    "pagination": "408", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1134477773"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-020-79745-6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "33432032"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-020-79745-6", 
      "https://app.dimensions.ai/details/publication/pub.1134477773"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_893.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-020-79745-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-020-79745-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-020-79745-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-020-79745-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-020-79745-6'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      21 PREDICATES      87 URIs      69 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-020-79745-6 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N731aa746941b41e39ac2a81a65fca0cc
4 schema:citation sg:pub.10.1007/978-1-4939-2438-7_1
5 sg:pub.10.1007/s11427-020-1661-4
6 sg:pub.10.1007/s11538-020-00791-2
7 sg:pub.10.1038/033073a0
8 sg:pub.10.1038/s41567-020-0921-x
9 sg:pub.10.1038/s41586-020-2179-y
10 sg:pub.10.1038/s41591-020-0820-9
11 sg:pub.10.1038/s41591-020-0869-5
12 sg:pub.10.1038/s41591-020-0962-9
13 sg:pub.10.1186/s12874-020-01081-0
14 schema:datePublished 2021-01-11
15 schema:datePublishedReg 2021-01-11
16 schema:description We sought to investigate whether epidemiological parameters that define epidemic models could be determined from the epidemic trajectory of infections, recovery, and hospitalizations prior to peak, and also to evaluate the comparability of data between jurisdictions reporting their statistics. We found that, analytically, the pre-peak growth of an epidemic underdetermines the model variates, and that the rate limiting variables are dominated by the exponentially expanding eigenmode of their equations. The variates quickly converge to the ratio of eigenvector components of the positive growth mode, which determines the doubling time. Without a sound epidemiological study framework, measurements of infection rates and other parameters are highly corrupted by uneven testing rates, uneven counting, and under reporting of relevant values. We argue that structured experiments must be performed to estimate these parameters in order to perform genetic association studies, or to construct viable models accurately predicting critical quantities such as hospitalization loads.
17 schema:genre article
18 schema:isAccessibleForFree true
19 schema:isPartOf N6da533681f42463a97d5f44ef95e140a
20 Nba8f3d2eebc648469dab32c6e663c82e
21 sg:journal.1045337
22 schema:keywords association studies
23 comparability
24 comparability of data
25 components
26 counting
27 critical quantities
28 darn
29 data
30 eigenmodes
31 eigenvector components
32 epidemic
33 epidemic model
34 epidemic trajectories
35 epidemiological parameters
36 equations
37 estimation
38 experiments
39 framework
40 genetic association studies
41 good statistics
42 growth
43 growth mode
44 hospitalization
45 infection
46 infection rate
47 jurisdictions
48 lies
49 load
50 measurements
51 mode
52 model
53 model parameter estimation
54 order
55 parameter estimation
56 parameters
57 peak
58 quantity
59 rate
60 ratio
61 recovery
62 relevant values
63 reporting
64 statistics
65 study
66 study framework
67 testing rates
68 time
69 trajectories
70 values
71 variables
72 variates
73 viable model
74 schema:name Lies, Gosh Darn Lies, and not enough good statistics: why epidemic model parameter estimation fails
75 schema:pagination 408
76 schema:productId N8f548af29c5645b4981f620f903cd9c0
77 Nb4ac12579f5d4090930b49d555e00805
78 Nc9b453c0befa4d15a64c4c04c5abfbe4
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134477773
80 https://doi.org/10.1038/s41598-020-79745-6
81 schema:sdDatePublished 2022-09-02T16:06
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N7cf62da43a5443f2b751f25b1d241542
84 schema:url https://doi.org/10.1038/s41598-020-79745-6
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N6da533681f42463a97d5f44ef95e140a schema:volumeNumber 11
89 rdf:type schema:PublicationVolume
90 N731aa746941b41e39ac2a81a65fca0cc rdf:first sg:person.01332106363.98
91 rdf:rest N93740db54661479e8739708c3f9c6976
92 N7cf62da43a5443f2b751f25b1d241542 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N8f548af29c5645b4981f620f903cd9c0 schema:name dimensions_id
95 schema:value pub.1134477773
96 rdf:type schema:PropertyValue
97 N93740db54661479e8739708c3f9c6976 rdf:first sg:person.01336557015.68
98 rdf:rest Nabbec0971a414d5bb66561660f633450
99 Nabbec0971a414d5bb66561660f633450 rdf:first sg:person.01270122124.47
100 rdf:rest rdf:nil
101 Nb4ac12579f5d4090930b49d555e00805 schema:name pubmed_id
102 schema:value 33432032
103 rdf:type schema:PropertyValue
104 Nba8f3d2eebc648469dab32c6e663c82e schema:issueNumber 1
105 rdf:type schema:PublicationIssue
106 Nc9b453c0befa4d15a64c4c04c5abfbe4 schema:name doi
107 schema:value 10.1038/s41598-020-79745-6
108 rdf:type schema:PropertyValue
109 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
110 schema:name Mathematical Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
113 schema:name Statistics
114 rdf:type schema:DefinedTerm
115 sg:journal.1045337 schema:issn 2045-2322
116 schema:name Scientific Reports
117 schema:publisher Springer Nature
118 rdf:type schema:Periodical
119 sg:person.01270122124.47 schema:affiliation grid-institutes:grid.33070.37
120 schema:familyName Zalloua
121 schema:givenName Pierre
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270122124.47
123 rdf:type schema:Person
124 sg:person.01332106363.98 schema:affiliation grid-institutes:grid.481554.9
125 schema:familyName Platt
126 schema:givenName Daniel E.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332106363.98
128 rdf:type schema:Person
129 sg:person.01336557015.68 schema:affiliation grid-institutes:grid.481554.9
130 schema:familyName Parida
131 schema:givenName Laxmi
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336557015.68
133 rdf:type schema:Person
134 sg:pub.10.1007/978-1-4939-2438-7_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019538325
135 https://doi.org/10.1007/978-1-4939-2438-7_1
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s11427-020-1661-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125484154
138 https://doi.org/10.1007/s11427-020-1661-4
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s11538-020-00791-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130204554
141 https://doi.org/10.1007/s11538-020-00791-2
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/033073a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028590845
144 https://doi.org/10.1038/033073a0
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/s41567-020-0921-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1127868256
147 https://doi.org/10.1038/s41567-020-0921-x
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/s41586-020-2179-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1125975630
150 https://doi.org/10.1038/s41586-020-2179-y
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/s41591-020-0820-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125686004
153 https://doi.org/10.1038/s41591-020-0820-9
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/s41591-020-0869-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126655280
156 https://doi.org/10.1038/s41591-020-0869-5
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/s41591-020-0962-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128492568
159 https://doi.org/10.1038/s41591-020-0962-9
160 rdf:type schema:CreativeWork
161 sg:pub.10.1186/s12874-020-01081-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129556585
162 https://doi.org/10.1186/s12874-020-01081-0
163 rdf:type schema:CreativeWork
164 grid-institutes:grid.33070.37 schema:alternateName School of Medicine, University of Balamand, P.O. Box 33, Amioun, Lebanon
165 schema:name School of Medicine, University of Balamand, P.O. Box 33, Amioun, Lebanon
166 TH Chan Harvard School of Public Health, Harvard University, Cambridge, USA
167 rdf:type schema:Organization
168 grid-institutes:grid.481554.9 schema:alternateName Computational Genomics, IBM T. J. Watson Research Center, New York, USA
169 schema:name Computational Genomics, IBM T. J. Watson Research Center, New York, USA
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...