Ontology type: schema:ScholarlyArticle Open Access: True
2020-12-03
AUTHORSBenedito A. L. Raul, Yuriy N. Luponosov, Wenyan Yang, Nikolay M. Surin, Olivier Douhéret, Jie Min, Thomas L. C. Jansen, Sergei A. Ponomarenko, Maxim S. Pshenichnikov
ABSTRACTTriphenylamine-based small push–pull molecules have recently attracted substantial research attention due to their unique optoelectronic properties. Here, we investigate the excited state de-excitation dynamics and exciton diffusion in TPA-T-DCV-Ph-F small molecule, having simple chemical structure with asymmetrical architecture and end-capped with electron-withdrawing p-fluorodicyanovinyl group. The excited state lifetime in diluted solutions (0.04 ns in toluene and 0.4 ns in chloroform) are found to be surprisingly shorter compared to the solid state (3 ns in PMMA matrix). Time-dependent density functional theory indicates that this behavior originates from non-radiative relaxation of the excited state through a conical intersection between the ground and singlet excited state potential energy surfaces. Exciton diffusion length of ~ 16 nm in solution processed films was retrieved by employing time-resolved photoluminescence volume quenching measurements with Monte Carlo simulations. As means of investigating the device performance of TPA-T-DCV-Ph-F, we manufactured solution and vacuum processed bulk heterojunction solar cells that yielded efficiencies of ~ 1.5% and ~ 3.7%, respectively. Our findings demonstrate that the short lifetime in solutions does not hinder per se long exciton diffusion length in films thereby granting applications of TPA-T-DCV-Ph-F and similar push–pull molecules in vacuum and solution processable devices. More... »
PAGES21198
http://scigraph.springernature.com/pub.10.1038/s41598-020-78197-2
DOIhttp://dx.doi.org/10.1038/s41598-020-78197-2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1132951107
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/33273567
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Macromolecular and Materials Chemistry",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands",
"id": "http://www.grid.ac/institutes/grid.4830.f",
"name": [
"Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands"
],
"type": "Organization"
},
"familyName": "Raul",
"givenName": "Benedito A. L.",
"id": "sg:person.07670222303.47",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07670222303.47"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Chemistry Department, Moscow State University, 1/3 Leninskie Gory, 119991, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.14476.30",
"name": [
"Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya 70, 117393, Moscow, Russia",
"Chemistry Department, Moscow State University, 1/3 Leninskie Gory, 119991, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Luponosov",
"givenName": "Yuriy N.",
"id": "sg:person.010077354756.67",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010077354756.67"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "The Institute for Advanced Studies, Wuhan University, 430072, Wuhan City, Hubei Province, China",
"id": "http://www.grid.ac/institutes/grid.49470.3e",
"name": [
"The Institute for Advanced Studies, Wuhan University, 430072, Wuhan City, Hubei Province, China"
],
"type": "Organization"
},
"familyName": "Yang",
"givenName": "Wenyan",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya 70, 117393, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.465299.5",
"name": [
"Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya 70, 117393, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Surin",
"givenName": "Nikolay M.",
"id": "sg:person.014010415772.35",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014010415772.35"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Materia Nova R&D Center, Avenue Nicolas Copernic 3, 7000, Mons, Belgium",
"id": "http://www.grid.ac/institutes/grid.435745.4",
"name": [
"Materia Nova R&D Center, Avenue Nicolas Copernic 3, 7000, Mons, Belgium"
],
"type": "Organization"
},
"familyName": "Douh\u00e9ret",
"givenName": "Olivier",
"id": "sg:person.0646650735.54",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646650735.54"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, 450002, Zhengzhou, China",
"id": "http://www.grid.ac/institutes/grid.207374.5",
"name": [
"The Institute for Advanced Studies, Wuhan University, 430072, Wuhan City, Hubei Province, China",
"Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, 450002, Zhengzhou, China"
],
"type": "Organization"
},
"familyName": "Min",
"givenName": "Jie",
"id": "sg:person.01242514352.60",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242514352.60"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands",
"id": "http://www.grid.ac/institutes/grid.4830.f",
"name": [
"Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands"
],
"type": "Organization"
},
"familyName": "Jansen",
"givenName": "Thomas L. C.",
"id": "sg:person.013015043432.87",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013015043432.87"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Chemistry Department, Moscow State University, 1/3 Leninskie Gory, 119991, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.14476.30",
"name": [
"Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya 70, 117393, Moscow, Russia",
"Chemistry Department, Moscow State University, 1/3 Leninskie Gory, 119991, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Ponomarenko",
"givenName": "Sergei A.",
"id": "sg:person.011475560464.72",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011475560464.72"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands",
"id": "http://www.grid.ac/institutes/grid.4830.f",
"name": [
"Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands"
],
"type": "Organization"
},
"familyName": "Pshenichnikov",
"givenName": "Maxim S.",
"id": "sg:person.01142722607.16",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142722607.16"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-0-387-46312-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025074156",
"https://doi.org/10.1007/978-0-387-46312-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-46684-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041581938",
"https://doi.org/10.1007/978-3-662-46684-1"
],
"type": "CreativeWork"
}
],
"datePublished": "2020-12-03",
"datePublishedReg": "2020-12-03",
"description": "Triphenylamine-based small push\u2013pull molecules have recently attracted substantial research attention due to their unique optoelectronic properties. Here, we investigate the excited state de-excitation dynamics and exciton diffusion in TPA-T-DCV-Ph-F small molecule, having simple chemical structure with asymmetrical architecture and end-capped with electron-withdrawing p-fluorodicyanovinyl group. The excited state lifetime in diluted solutions (0.04\u00a0ns in toluene and 0.4\u00a0ns in chloroform) are found to be surprisingly shorter compared to the solid state (3\u00a0ns in PMMA matrix). Time-dependent density functional theory indicates that this behavior originates from non-radiative relaxation of the excited state through a conical intersection between the ground and singlet excited state potential energy surfaces. Exciton diffusion length of\u2009~\u200916\u00a0nm in solution processed films was retrieved by employing time-resolved photoluminescence volume quenching measurements with Monte Carlo simulations. As means of investigating the device performance of TPA-T-DCV-Ph-F, we manufactured solution and vacuum processed bulk heterojunction solar cells that yielded efficiencies of\u2009~\u20091.5% and\u2009~\u20093.7%, respectively. Our findings demonstrate that the short lifetime in solutions does not hinder per se long exciton diffusion length in films thereby granting applications of TPA-T-DCV-Ph-F and similar push\u2013pull molecules in vacuum and solution processable devices.",
"genre": "article",
"id": "sg:pub.10.1038/s41598-020-78197-2",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.6504060",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.8726296",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1045337",
"issn": [
"2045-2322"
],
"name": "Scientific Reports",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "10"
}
],
"keywords": [
"push-pull molecules",
"exciton diffusion length",
"small push-pull molecules",
"small molecules",
"bulk heterojunction solar cells",
"solution-processable devices",
"long exciton diffusion length",
"exciton diffusion",
"excited state potential energy surfaces",
"state potential energy surface",
"simple chemical structure",
"time-dependent density functional theory",
"de-excitation dynamics",
"excited-state lifetime",
"potential energy surface",
"excited-state dynamics",
"unique optoelectronic properties",
"density functional theory",
"organic optoelectronics",
"non-radiative relaxation",
"heterojunction solar cells",
"solid state",
"chemical structure",
"diffusion length",
"energy surface",
"functional theory",
"optoelectronic properties",
"state lifetime",
"solar cells",
"molecules",
"conical intersection",
"excited states",
"state dynamics",
"short lifetime",
"pH",
"device performance",
"films",
"solution",
"optoelectronics",
"vacuum",
"diffusion",
"lifetime",
"asymmetrical architecture",
"surface",
"properties",
"substantial research attention",
"structure",
"research attention",
"relaxation",
"state",
"applications",
"efficiency",
"measurements",
"Monte Carlo simulations",
"length",
"devices",
"dynamics",
"Carlo simulations",
"behavior",
"performance",
"means",
"group",
"volume",
"simulations",
"cells",
"attention",
"architecture",
"theory",
"ground",
"findings",
"intersection"
],
"name": "Excited state dynamics and exciton diffusion in triphenylamine/dicyanovinyl push\u2013pull small molecule for organic optoelectronics",
"pagination": "21198",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1132951107"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/s41598-020-78197-2"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"33273567"
]
}
],
"sameAs": [
"https://doi.org/10.1038/s41598-020-78197-2",
"https://app.dimensions.ai/details/publication/pub.1132951107"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T17:08",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_832.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1038/s41598-020-78197-2"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-020-78197-2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-020-78197-2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-020-78197-2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-020-78197-2'
This table displays all metadata directly associated to this object as RDF triples.
219 TRIPLES
21 PREDICATES
99 URIs
88 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1038/s41598-020-78197-2 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0303 |
3 | ″ | ″ | anzsrc-for:0306 |
4 | ″ | schema:author | N1b46ad2cad7146cc9ffc4c4942bf7e90 |
5 | ″ | schema:citation | sg:pub.10.1007/978-0-387-46312-4 |
6 | ″ | ″ | sg:pub.10.1007/978-3-662-46684-1 |
7 | ″ | schema:datePublished | 2020-12-03 |
8 | ″ | schema:datePublishedReg | 2020-12-03 |
9 | ″ | schema:description | Triphenylamine-based small push–pull molecules have recently attracted substantial research attention due to their unique optoelectronic properties. Here, we investigate the excited state de-excitation dynamics and exciton diffusion in TPA-T-DCV-Ph-F small molecule, having simple chemical structure with asymmetrical architecture and end-capped with electron-withdrawing p-fluorodicyanovinyl group. The excited state lifetime in diluted solutions (0.04 ns in toluene and 0.4 ns in chloroform) are found to be surprisingly shorter compared to the solid state (3 ns in PMMA matrix). Time-dependent density functional theory indicates that this behavior originates from non-radiative relaxation of the excited state through a conical intersection between the ground and singlet excited state potential energy surfaces. Exciton diffusion length of ~ 16 nm in solution processed films was retrieved by employing time-resolved photoluminescence volume quenching measurements with Monte Carlo simulations. As means of investigating the device performance of TPA-T-DCV-Ph-F, we manufactured solution and vacuum processed bulk heterojunction solar cells that yielded efficiencies of ~ 1.5% and ~ 3.7%, respectively. Our findings demonstrate that the short lifetime in solutions does not hinder per se long exciton diffusion length in films thereby granting applications of TPA-T-DCV-Ph-F and similar push–pull molecules in vacuum and solution processable devices. |
10 | ″ | schema:genre | article |
11 | ″ | schema:isAccessibleForFree | true |
12 | ″ | schema:isPartOf | N6c96f527e42044e7907dc94c7c1bedb8 |
13 | ″ | ″ | Nf9855e17f2ad4edc90ba305be5699939 |
14 | ″ | ″ | sg:journal.1045337 |
15 | ″ | schema:keywords | Carlo simulations |
16 | ″ | ″ | Monte Carlo simulations |
17 | ″ | ″ | applications |
18 | ″ | ″ | architecture |
19 | ″ | ″ | asymmetrical architecture |
20 | ″ | ″ | attention |
21 | ″ | ″ | behavior |
22 | ″ | ″ | bulk heterojunction solar cells |
23 | ″ | ″ | cells |
24 | ″ | ″ | chemical structure |
25 | ″ | ″ | conical intersection |
26 | ″ | ″ | de-excitation dynamics |
27 | ″ | ″ | density functional theory |
28 | ″ | ″ | device performance |
29 | ″ | ″ | devices |
30 | ″ | ″ | diffusion |
31 | ″ | ″ | diffusion length |
32 | ″ | ″ | dynamics |
33 | ″ | ″ | efficiency |
34 | ″ | ″ | energy surface |
35 | ″ | ″ | excited state potential energy surfaces |
36 | ″ | ″ | excited states |
37 | ″ | ″ | excited-state dynamics |
38 | ″ | ″ | excited-state lifetime |
39 | ″ | ″ | exciton diffusion |
40 | ″ | ″ | exciton diffusion length |
41 | ″ | ″ | films |
42 | ″ | ″ | findings |
43 | ″ | ″ | functional theory |
44 | ″ | ″ | ground |
45 | ″ | ″ | group |
46 | ″ | ″ | heterojunction solar cells |
47 | ″ | ″ | intersection |
48 | ″ | ″ | length |
49 | ″ | ″ | lifetime |
50 | ″ | ″ | long exciton diffusion length |
51 | ″ | ″ | means |
52 | ″ | ″ | measurements |
53 | ″ | ″ | molecules |
54 | ″ | ″ | non-radiative relaxation |
55 | ″ | ″ | optoelectronic properties |
56 | ″ | ″ | optoelectronics |
57 | ″ | ″ | organic optoelectronics |
58 | ″ | ″ | pH |
59 | ″ | ″ | performance |
60 | ″ | ″ | potential energy surface |
61 | ″ | ″ | properties |
62 | ″ | ″ | push-pull molecules |
63 | ″ | ″ | relaxation |
64 | ″ | ″ | research attention |
65 | ″ | ″ | short lifetime |
66 | ″ | ″ | simple chemical structure |
67 | ″ | ″ | simulations |
68 | ″ | ″ | small molecules |
69 | ″ | ″ | small push-pull molecules |
70 | ″ | ″ | solar cells |
71 | ″ | ″ | solid state |
72 | ″ | ″ | solution |
73 | ″ | ″ | solution-processable devices |
74 | ″ | ″ | state |
75 | ″ | ″ | state dynamics |
76 | ″ | ″ | state lifetime |
77 | ″ | ″ | state potential energy surface |
78 | ″ | ″ | structure |
79 | ″ | ″ | substantial research attention |
80 | ″ | ″ | surface |
81 | ″ | ″ | theory |
82 | ″ | ″ | time-dependent density functional theory |
83 | ″ | ″ | unique optoelectronic properties |
84 | ″ | ″ | vacuum |
85 | ″ | ″ | volume |
86 | ″ | schema:name | Excited state dynamics and exciton diffusion in triphenylamine/dicyanovinyl push–pull small molecule for organic optoelectronics |
87 | ″ | schema:pagination | 21198 |
88 | ″ | schema:productId | N509cfc46cff3458d9502dd9c9ab2569e |
89 | ″ | ″ | N8826a437075e4f64abe95786fc9dc56a |
90 | ″ | ″ | Naa019b912f0f4045b2ca5e0a67a9c780 |
91 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1132951107 |
92 | ″ | ″ | https://doi.org/10.1038/s41598-020-78197-2 |
93 | ″ | schema:sdDatePublished | 2022-08-04T17:08 |
94 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
95 | ″ | schema:sdPublisher | N70aedb8befa44aeda3c71f72046ceddd |
96 | ″ | schema:url | https://doi.org/10.1038/s41598-020-78197-2 |
97 | ″ | sgo:license | sg:explorer/license/ |
98 | ″ | sgo:sdDataset | articles |
99 | ″ | rdf:type | schema:ScholarlyArticle |
100 | N131be722d84b4bf3812aa98d0023726c | schema:affiliation | grid-institutes:grid.49470.3e |
101 | ″ | schema:familyName | Yang |
102 | ″ | schema:givenName | Wenyan |
103 | ″ | rdf:type | schema:Person |
104 | N1b46ad2cad7146cc9ffc4c4942bf7e90 | rdf:first | sg:person.07670222303.47 |
105 | ″ | rdf:rest | Nd7ce5c179a4b404ba0e2a5457cf1b906 |
106 | N509cfc46cff3458d9502dd9c9ab2569e | schema:name | dimensions_id |
107 | ″ | schema:value | pub.1132951107 |
108 | ″ | rdf:type | schema:PropertyValue |
109 | N632c7ada54d14717892e74f94bea2ff0 | rdf:first | sg:person.01142722607.16 |
110 | ″ | rdf:rest | rdf:nil |
111 | N65c21c5408b14669a91e701c77ee69b6 | rdf:first | sg:person.014010415772.35 |
112 | ″ | rdf:rest | Ne1f6398ac72a4cea8d019858fb26170f |
113 | N670dbe33bc60422ba9f152582dc4f2f0 | rdf:first | sg:person.013015043432.87 |
114 | ″ | rdf:rest | N874c77737eb6429b9a4739cc4e8d4f35 |
115 | N6c96f527e42044e7907dc94c7c1bedb8 | schema:issueNumber | 1 |
116 | ″ | rdf:type | schema:PublicationIssue |
117 | N70aedb8befa44aeda3c71f72046ceddd | schema:name | Springer Nature - SN SciGraph project |
118 | ″ | rdf:type | schema:Organization |
119 | N874c77737eb6429b9a4739cc4e8d4f35 | rdf:first | sg:person.011475560464.72 |
120 | ″ | rdf:rest | N632c7ada54d14717892e74f94bea2ff0 |
121 | N8826a437075e4f64abe95786fc9dc56a | schema:name | doi |
122 | ″ | schema:value | 10.1038/s41598-020-78197-2 |
123 | ″ | rdf:type | schema:PropertyValue |
124 | Naa019b912f0f4045b2ca5e0a67a9c780 | schema:name | pubmed_id |
125 | ″ | schema:value | 33273567 |
126 | ″ | rdf:type | schema:PropertyValue |
127 | Nb7c9e9ed01c64188ae040026a2a154af | rdf:first | sg:person.01242514352.60 |
128 | ″ | rdf:rest | N670dbe33bc60422ba9f152582dc4f2f0 |
129 | Nc7b4eb7f928d4845858ced13bfe6ce95 | rdf:first | N131be722d84b4bf3812aa98d0023726c |
130 | ″ | rdf:rest | N65c21c5408b14669a91e701c77ee69b6 |
131 | Nd7ce5c179a4b404ba0e2a5457cf1b906 | rdf:first | sg:person.010077354756.67 |
132 | ″ | rdf:rest | Nc7b4eb7f928d4845858ced13bfe6ce95 |
133 | Ne1f6398ac72a4cea8d019858fb26170f | rdf:first | sg:person.0646650735.54 |
134 | ″ | rdf:rest | Nb7c9e9ed01c64188ae040026a2a154af |
135 | Nf9855e17f2ad4edc90ba305be5699939 | schema:volumeNumber | 10 |
136 | ″ | rdf:type | schema:PublicationVolume |
137 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
138 | ″ | schema:name | Chemical Sciences |
139 | ″ | rdf:type | schema:DefinedTerm |
140 | anzsrc-for:0303 | schema:inDefinedTermSet | anzsrc-for: |
141 | ″ | schema:name | Macromolecular and Materials Chemistry |
142 | ″ | rdf:type | schema:DefinedTerm |
143 | anzsrc-for:0306 | schema:inDefinedTermSet | anzsrc-for: |
144 | ″ | schema:name | Physical Chemistry (incl. Structural) |
145 | ″ | rdf:type | schema:DefinedTerm |
146 | sg:grant.6504060 | http://pending.schema.org/fundedItem | sg:pub.10.1038/s41598-020-78197-2 |
147 | ″ | rdf:type | schema:MonetaryGrant |
148 | sg:grant.8726296 | http://pending.schema.org/fundedItem | sg:pub.10.1038/s41598-020-78197-2 |
149 | ″ | rdf:type | schema:MonetaryGrant |
150 | sg:journal.1045337 | schema:issn | 2045-2322 |
151 | ″ | schema:name | Scientific Reports |
152 | ″ | schema:publisher | Springer Nature |
153 | ″ | rdf:type | schema:Periodical |
154 | sg:person.010077354756.67 | schema:affiliation | grid-institutes:grid.14476.30 |
155 | ″ | schema:familyName | Luponosov |
156 | ″ | schema:givenName | Yuriy N. |
157 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010077354756.67 |
158 | ″ | rdf:type | schema:Person |
159 | sg:person.01142722607.16 | schema:affiliation | grid-institutes:grid.4830.f |
160 | ″ | schema:familyName | Pshenichnikov |
161 | ″ | schema:givenName | Maxim S. |
162 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142722607.16 |
163 | ″ | rdf:type | schema:Person |
164 | sg:person.011475560464.72 | schema:affiliation | grid-institutes:grid.14476.30 |
165 | ″ | schema:familyName | Ponomarenko |
166 | ″ | schema:givenName | Sergei A. |
167 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011475560464.72 |
168 | ″ | rdf:type | schema:Person |
169 | sg:person.01242514352.60 | schema:affiliation | grid-institutes:grid.207374.5 |
170 | ″ | schema:familyName | Min |
171 | ″ | schema:givenName | Jie |
172 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242514352.60 |
173 | ″ | rdf:type | schema:Person |
174 | sg:person.013015043432.87 | schema:affiliation | grid-institutes:grid.4830.f |
175 | ″ | schema:familyName | Jansen |
176 | ″ | schema:givenName | Thomas L. C. |
177 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013015043432.87 |
178 | ″ | rdf:type | schema:Person |
179 | sg:person.014010415772.35 | schema:affiliation | grid-institutes:grid.465299.5 |
180 | ″ | schema:familyName | Surin |
181 | ″ | schema:givenName | Nikolay M. |
182 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014010415772.35 |
183 | ″ | rdf:type | schema:Person |
184 | sg:person.0646650735.54 | schema:affiliation | grid-institutes:grid.435745.4 |
185 | ″ | schema:familyName | Douhéret |
186 | ″ | schema:givenName | Olivier |
187 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646650735.54 |
188 | ″ | rdf:type | schema:Person |
189 | sg:person.07670222303.47 | schema:affiliation | grid-institutes:grid.4830.f |
190 | ″ | schema:familyName | Raul |
191 | ″ | schema:givenName | Benedito A. L. |
192 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07670222303.47 |
193 | ″ | rdf:type | schema:Person |
194 | sg:pub.10.1007/978-0-387-46312-4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1025074156 |
195 | ″ | ″ | https://doi.org/10.1007/978-0-387-46312-4 |
196 | ″ | rdf:type | schema:CreativeWork |
197 | sg:pub.10.1007/978-3-662-46684-1 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1041581938 |
198 | ″ | ″ | https://doi.org/10.1007/978-3-662-46684-1 |
199 | ″ | rdf:type | schema:CreativeWork |
200 | grid-institutes:grid.14476.30 | schema:alternateName | Chemistry Department, Moscow State University, 1/3 Leninskie Gory, 119991, Moscow, Russia |
201 | ″ | schema:name | Chemistry Department, Moscow State University, 1/3 Leninskie Gory, 119991, Moscow, Russia |
202 | ″ | ″ | Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya 70, 117393, Moscow, Russia |
203 | ″ | rdf:type | schema:Organization |
204 | grid-institutes:grid.207374.5 | schema:alternateName | Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, 450002, Zhengzhou, China |
205 | ″ | schema:name | Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, 450002, Zhengzhou, China |
206 | ″ | ″ | The Institute for Advanced Studies, Wuhan University, 430072, Wuhan City, Hubei Province, China |
207 | ″ | rdf:type | schema:Organization |
208 | grid-institutes:grid.435745.4 | schema:alternateName | Materia Nova R&D Center, Avenue Nicolas Copernic 3, 7000, Mons, Belgium |
209 | ″ | schema:name | Materia Nova R&D Center, Avenue Nicolas Copernic 3, 7000, Mons, Belgium |
210 | ″ | rdf:type | schema:Organization |
211 | grid-institutes:grid.465299.5 | schema:alternateName | Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya 70, 117393, Moscow, Russia |
212 | ″ | schema:name | Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya 70, 117393, Moscow, Russia |
213 | ″ | rdf:type | schema:Organization |
214 | grid-institutes:grid.4830.f | schema:alternateName | Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands |
215 | ″ | schema:name | Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands |
216 | ″ | rdf:type | schema:Organization |
217 | grid-institutes:grid.49470.3e | schema:alternateName | The Institute for Advanced Studies, Wuhan University, 430072, Wuhan City, Hubei Province, China |
218 | ″ | schema:name | The Institute for Advanced Studies, Wuhan University, 430072, Wuhan City, Hubei Province, China |
219 | ″ | rdf:type | schema:Organization |