Estimation of optimal number of gates in dual gated 18F-FDG cardiac PET View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-11-09

AUTHORS

R. Klén, J. Teuho, T. Noponen, K. Thielemans, E. Hoppela, E. Lehtonen, H. T. Sipila, M. Teräs, J. Knuuti

ABSTRACT

Gating of positron emission tomography images has been shown to reduce the motion effects, especially when imaging small targets, such as coronary plaques. However, the selection of optimal number of gates for gating remains a challenge. Selecting too high number of gates results in a loss of signal-to-noise ratio, while too low number of gates does remove only part of the motion. Here, we introduce a respiratory-cardiac motion model to determine the optimal number of respiratory and cardiac gates. We evaluate the model using a realistic heart phantom and data from 12 cardiac patients (47–77 years, 64.5 on average). To demonstrate the benefits of our model, we compared it with an existing respiratory model. Based on our study, the optimal number of gates was determined to be five respiratory and four cardiac gates in the phantom and patient studies. In the phantom study, the diameter of the most active hot spot was reduced by 24% in the dual gated images compared to non-gated images. In the patient study, the thickness of myocardium wall was reduced on average by 21%. In conclusion, the motion model can be used for estimating the optimal number of respiratory and cardiac gates for dual gating. More... »

PAGES

19362

References to SciGraph publications

  • 2016-08-26. A method to assess image quality for Low-dose PET: analysis of SNR, CNR, bias and image noise in CANCER IMAGING
  • 2016-02-16. Recent developments in time-of-flight PET in EJNMMI PHYSICS
  • 2008-03-07. Combined imaging of molecular function and morphology with PET/CT and SPECT/CT: Image fusion and motion correction in BASIC RESEARCH IN CARDIOLOGY
  • 2019-02-13. Data-driven, projection-based respiratory motion compensation of PET data for cardiac PET/CT and PET/MR imaging in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2009-09-30. Dual-gated cardiac PET–Clinical feasibility study in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2010-12-16. Motion frozen 18F-FDG cardiac PET in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2007-07-28. Performance of the new generation of whole-body PET/CT scanners: Discovery STE and Discovery VCT in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2015-03-26. Imaging moving heart structures with PET in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2008-09-12. Respiratory motion handling is mandatory to accomplish the high-resolution PET destiny in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2019-08-05. Triple-gated motion and blood pool clearance corrections improve reproducibility of coronary 18F-NaF PET in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2007-02-21. Dual cardiac–respiratory gated PET: implementation and results from a feasibility study in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2009-11-18. Dual gated PET/CT imaging of small targets of the heart: Method description and testing with a dynamic heart phantom in JOURNAL OF NUCLEAR CARDIOLOGY
  • 2015-02-20. Linear relation between spirometric volume and the motion of cardiac structures: MRI and clinical PET study in JOURNAL OF NUCLEAR CARDIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-020-75613-5

    DOI

    http://dx.doi.org/10.1038/s41598-020-75613-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1132442731

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/33168859


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Cardiorespiratory Medicine and Haematology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cardiovascular Diseases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fluorodeoxyglucose F18", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Heart", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Processing, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Motion", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phantoms, Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Positron Emission Tomography Computed Tomography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Respiration", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Signal-To-Noise Ratio", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland", 
              "id": "http://www.grid.ac/institutes/grid.470895.7", 
              "name": [
                "Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kl\u00e9n", 
            "givenName": "R.", 
            "id": "sg:person.014042715235.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014042715235.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland", 
              "id": "http://www.grid.ac/institutes/grid.470895.7", 
              "name": [
                "Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Teuho", 
            "givenName": "J.", 
            "id": "sg:person.01300017613.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300017613.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland", 
              "id": "http://www.grid.ac/institutes/grid.410552.7", 
              "name": [
                "Division of Medical Imaging, Department of Medical Physics, Turku University Hospital, Turku, Finland", 
                "Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Noponen", 
            "givenName": "T.", 
            "id": "sg:person.015673636475.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015673636475.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hammersmith Imanet Ltd, London, UK", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "University College London, London, UK", 
                "Hammersmith Imanet Ltd, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thielemans", 
            "givenName": "K.", 
            "id": "sg:person.01244327151.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244327151.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland", 
              "id": "http://www.grid.ac/institutes/grid.470895.7", 
              "name": [
                "Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hoppela", 
            "givenName": "E.", 
            "id": "sg:person.0745043221.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745043221.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Future Technologies, University of Turku, Turku, Finland", 
              "id": "http://www.grid.ac/institutes/grid.1374.1", 
              "name": [
                "Department of Future Technologies, University of Turku, Turku, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lehtonen", 
            "givenName": "E.", 
            "id": "sg:person.016707111625.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016707111625.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland", 
              "id": "http://www.grid.ac/institutes/grid.470895.7", 
              "name": [
                "Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sipila", 
            "givenName": "H. T.", 
            "id": "sg:person.01206306567.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206306567.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Biomedicine, University of Turku, Turku, Finland", 
              "id": "http://www.grid.ac/institutes/grid.1374.1", 
              "name": [
                "Division of Medical Imaging, Department of Medical Physics, Turku University Hospital, Turku, Finland", 
                "Institute of Biomedicine, University of Turku, Turku, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ter\u00e4s", 
            "givenName": "M.", 
            "id": "sg:person.01101061462.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101061462.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland", 
              "id": "http://www.grid.ac/institutes/grid.470895.7", 
              "name": [
                "Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Knuuti", 
            "givenName": "J.", 
            "id": "sg:person.01163336756.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163336756.79"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s12350-009-9163-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052289628", 
              "https://doi.org/10.1007/s12350-009-9163-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40644-016-0086-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022739365", 
              "https://doi.org/10.1186/s40644-016-0086-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-015-0094-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049623480", 
              "https://doi.org/10.1007/s12350-015-0094-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-019-01613-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112097636", 
              "https://doi.org/10.1007/s12350-019-01613-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-007-0374-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034213847", 
              "https://doi.org/10.1007/s00259-007-0374-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-010-9322-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025713738", 
              "https://doi.org/10.1007/s12350-010-9322-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12350-014-0057-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012768937", 
              "https://doi.org/10.1007/s12350-014-0057-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-007-0493-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010148911", 
              "https://doi.org/10.1007/s00259-007-0493-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-009-1252-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039681053", 
              "https://doi.org/10.1007/s00259-009-1252-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40658-016-0138-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008175278", 
              "https://doi.org/10.1186/s40658-016-0138-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-008-0931-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048275554", 
              "https://doi.org/10.1007/s00259-008-0931-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-019-04437-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120145293", 
              "https://doi.org/10.1007/s00259-019-04437-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00395-008-0717-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002871231", 
              "https://doi.org/10.1007/s00395-008-0717-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-11-09", 
        "datePublishedReg": "2020-11-09", 
        "description": "Gating of positron emission tomography images has been shown to reduce the motion effects, especially when imaging small targets, such as coronary plaques. However, the selection of optimal number of gates for gating remains a challenge. Selecting too high number of gates results in a loss of signal-to-noise ratio, while too low number of gates does remove only part of the motion. Here, we introduce a respiratory-cardiac motion model to determine the optimal number of respiratory and cardiac gates. We evaluate the model using a realistic heart phantom and data from 12 cardiac patients (47\u201377\u00a0years, 64.5 on average). To demonstrate the benefits of our model, we compared it with an existing respiratory model. Based on our study, the optimal number of gates was determined to be five respiratory and four cardiac gates in the phantom and patient studies. In the phantom study, the diameter of the most active hot spot was reduced by 24% in the dual gated images compared to non-gated images. In the patient study, the thickness of myocardium wall was reduced on average by 21%. In conclusion, the motion model can be used for estimating the optimal number of respiratory and cardiac gates for dual gating.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-020-75613-5", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8844214", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "keywords": [
          "patient studies", 
          "coronary plaques", 
          "cardiac patients", 
          "cardiac gates", 
          "emission tomography images", 
          "non-gated images", 
          "respiratory model", 
          "tomography images", 
          "positron emission tomography (PET) images", 
          "cardiac PET", 
          "low number", 
          "higher number", 
          "patients", 
          "heart phantom", 
          "phantom study", 
          "myocardium wall", 
          "plaques", 
          "study", 
          "loss of signal", 
          "gating", 
          "conclusion", 
          "PET", 
          "number", 
          "dual gating", 
          "target", 
          "benefits", 
          "loss", 
          "effect", 
          "only part", 
          "data", 
          "wall", 
          "model", 
          "ratio", 
          "diameter", 
          "results", 
          "realistic heart phantom", 
          "challenges", 
          "small targets", 
          "images", 
          "part", 
          "phantom", 
          "hot spots", 
          "selection", 
          "spots", 
          "thickness", 
          "motion effects", 
          "optimal number", 
          "signals", 
          "motion", 
          "noise ratio", 
          "estimation", 
          "active hot spots", 
          "gate", 
          "motion model", 
          "gate results"
        ], 
        "name": "Estimation of optimal number of gates in dual gated 18F-FDG cardiac PET", 
        "pagination": "19362", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1132442731"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-020-75613-5"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "33168859"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-020-75613-5", 
          "https://app.dimensions.ai/details/publication/pub.1132442731"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_842.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-020-75613-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-020-75613-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-020-75613-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-020-75613-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-020-75613-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    300 TRIPLES      22 PREDICATES      109 URIs      88 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-020-75613-5 schema:about N15919f79782a4dc0890541969f7dfa8a
    2 N235fa74dd74249dd8eefcbd7e3af3048
    3 N2d55ea2ea7c34952a7bf7ffff1ef18a5
    4 N45d35646723f4a3bac02c96cee1b692b
    5 N53514afa8faf4ce0ab1d3a9a7fb9d25f
    6 N61a09f8d7e5a4c2a8be5a901686862f2
    7 N74d2e836f9c04ac19b575b19eff58b2f
    8 N76497b0425da4a1f99852b2a85ed26bb
    9 N89a6d3ec0e2d40f78978375625f26774
    10 Naa102ec4e7d14f4698c56a3b74db0aaf
    11 Nb73ac3357f5747a5917fcb0c0284f298
    12 Nbbecceae53d34c56a21a962fe83f85af
    13 Nede7e6a7a79a49c4958d74507fa51b1f
    14 Nf430082d512c4e07a83ed72c1eb0c8db
    15 Nfcbc3b39396c4668ae0083f4dde01c2b
    16 anzsrc-for:11
    17 anzsrc-for:1102
    18 schema:author N48daee2a04234eea871ab6301008ef00
    19 schema:citation sg:pub.10.1007/s00259-007-0374-9
    20 sg:pub.10.1007/s00259-007-0493-3
    21 sg:pub.10.1007/s00259-008-0931-x
    22 sg:pub.10.1007/s00259-009-1252-4
    23 sg:pub.10.1007/s00259-019-04437-x
    24 sg:pub.10.1007/s00395-008-0717-0
    25 sg:pub.10.1007/s12350-009-9163-0
    26 sg:pub.10.1007/s12350-010-9322-3
    27 sg:pub.10.1007/s12350-014-0057-4
    28 sg:pub.10.1007/s12350-015-0094-7
    29 sg:pub.10.1007/s12350-019-01613-2
    30 sg:pub.10.1186/s40644-016-0086-0
    31 sg:pub.10.1186/s40658-016-0138-3
    32 schema:datePublished 2020-11-09
    33 schema:datePublishedReg 2020-11-09
    34 schema:description Gating of positron emission tomography images has been shown to reduce the motion effects, especially when imaging small targets, such as coronary plaques. However, the selection of optimal number of gates for gating remains a challenge. Selecting too high number of gates results in a loss of signal-to-noise ratio, while too low number of gates does remove only part of the motion. Here, we introduce a respiratory-cardiac motion model to determine the optimal number of respiratory and cardiac gates. We evaluate the model using a realistic heart phantom and data from 12 cardiac patients (47–77 years, 64.5 on average). To demonstrate the benefits of our model, we compared it with an existing respiratory model. Based on our study, the optimal number of gates was determined to be five respiratory and four cardiac gates in the phantom and patient studies. In the phantom study, the diameter of the most active hot spot was reduced by 24% in the dual gated images compared to non-gated images. In the patient study, the thickness of myocardium wall was reduced on average by 21%. In conclusion, the motion model can be used for estimating the optimal number of respiratory and cardiac gates for dual gating.
    35 schema:genre article
    36 schema:inLanguage en
    37 schema:isAccessibleForFree true
    38 schema:isPartOf N071984300cdd4c5ba2b863b595998b77
    39 Nfb5a6061070847fe87be23822b1f3290
    40 sg:journal.1045337
    41 schema:keywords PET
    42 active hot spots
    43 benefits
    44 cardiac PET
    45 cardiac gates
    46 cardiac patients
    47 challenges
    48 conclusion
    49 coronary plaques
    50 data
    51 diameter
    52 dual gating
    53 effect
    54 emission tomography images
    55 estimation
    56 gate
    57 gate results
    58 gating
    59 heart phantom
    60 higher number
    61 hot spots
    62 images
    63 loss
    64 loss of signal
    65 low number
    66 model
    67 motion
    68 motion effects
    69 motion model
    70 myocardium wall
    71 noise ratio
    72 non-gated images
    73 number
    74 only part
    75 optimal number
    76 part
    77 patient studies
    78 patients
    79 phantom
    80 phantom study
    81 plaques
    82 positron emission tomography (PET) images
    83 ratio
    84 realistic heart phantom
    85 respiratory model
    86 results
    87 selection
    88 signals
    89 small targets
    90 spots
    91 study
    92 target
    93 thickness
    94 tomography images
    95 wall
    96 schema:name Estimation of optimal number of gates in dual gated 18F-FDG cardiac PET
    97 schema:pagination 19362
    98 schema:productId N47864fef4dc044eca14f19bbb4257316
    99 Na83f2e9ccad049a3953c66a8de16c969
    100 Na86dd8263aae4c66a02546eaae2de18c
    101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132442731
    102 https://doi.org/10.1038/s41598-020-75613-5
    103 schema:sdDatePublished 2022-05-20T07:36
    104 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    105 schema:sdPublisher Nd13e5da20072479d8c7f22f3afbe3680
    106 schema:url https://doi.org/10.1038/s41598-020-75613-5
    107 sgo:license sg:explorer/license/
    108 sgo:sdDataset articles
    109 rdf:type schema:ScholarlyArticle
    110 N071984300cdd4c5ba2b863b595998b77 schema:volumeNumber 10
    111 rdf:type schema:PublicationVolume
    112 N15919f79782a4dc0890541969f7dfa8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Cardiovascular Diseases
    114 rdf:type schema:DefinedTerm
    115 N235fa74dd74249dd8eefcbd7e3af3048 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Motion
    117 rdf:type schema:DefinedTerm
    118 N2d55ea2ea7c34952a7bf7ffff1ef18a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Respiration
    120 rdf:type schema:DefinedTerm
    121 N32da4e5fb4f34d20868bfbd14d4f3f65 rdf:first sg:person.01206306567.04
    122 rdf:rest N88750b9449dd407e88d178e370a229ad
    123 N42293721e0944969a45eebb1db8efb40 rdf:first sg:person.0745043221.92
    124 rdf:rest Na4d15aa48974440983a24130d5eb77a0
    125 N45d35646723f4a3bac02c96cee1b692b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Humans
    127 rdf:type schema:DefinedTerm
    128 N47864fef4dc044eca14f19bbb4257316 schema:name dimensions_id
    129 schema:value pub.1132442731
    130 rdf:type schema:PropertyValue
    131 N48daee2a04234eea871ab6301008ef00 rdf:first sg:person.014042715235.25
    132 rdf:rest Ne620857afe28423ba20a6cb946cce46c
    133 N53514afa8faf4ce0ab1d3a9a7fb9d25f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Positron Emission Tomography Computed Tomography
    135 rdf:type schema:DefinedTerm
    136 N54c029b14ab94bdd810cf6666b5631de rdf:first sg:person.01244327151.49
    137 rdf:rest N42293721e0944969a45eebb1db8efb40
    138 N61a09f8d7e5a4c2a8be5a901686862f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Middle Aged
    140 rdf:type schema:DefinedTerm
    141 N61cd8540830b46ab83064dbf7b0c0f24 rdf:first sg:person.015673636475.93
    142 rdf:rest N54c029b14ab94bdd810cf6666b5631de
    143 N74d2e836f9c04ac19b575b19eff58b2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Heart
    145 rdf:type schema:DefinedTerm
    146 N76497b0425da4a1f99852b2a85ed26bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Male
    148 rdf:type schema:DefinedTerm
    149 N88750b9449dd407e88d178e370a229ad rdf:first sg:person.01101061462.02
    150 rdf:rest Neb5061d35db44427ad2431c5d4bcee4b
    151 N89a6d3ec0e2d40f78978375625f26774 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Image Processing, Computer-Assisted
    153 rdf:type schema:DefinedTerm
    154 Na4d15aa48974440983a24130d5eb77a0 rdf:first sg:person.016707111625.02
    155 rdf:rest N32da4e5fb4f34d20868bfbd14d4f3f65
    156 Na83f2e9ccad049a3953c66a8de16c969 schema:name pubmed_id
    157 schema:value 33168859
    158 rdf:type schema:PropertyValue
    159 Na86dd8263aae4c66a02546eaae2de18c schema:name doi
    160 schema:value 10.1038/s41598-020-75613-5
    161 rdf:type schema:PropertyValue
    162 Naa102ec4e7d14f4698c56a3b74db0aaf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Signal-To-Noise Ratio
    164 rdf:type schema:DefinedTerm
    165 Nb73ac3357f5747a5917fcb0c0284f298 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Algorithms
    167 rdf:type schema:DefinedTerm
    168 Nbbecceae53d34c56a21a962fe83f85af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name Phantoms, Imaging
    170 rdf:type schema:DefinedTerm
    171 Nd13e5da20072479d8c7f22f3afbe3680 schema:name Springer Nature - SN SciGraph project
    172 rdf:type schema:Organization
    173 Ne620857afe28423ba20a6cb946cce46c rdf:first sg:person.01300017613.20
    174 rdf:rest N61cd8540830b46ab83064dbf7b0c0f24
    175 Neb5061d35db44427ad2431c5d4bcee4b rdf:first sg:person.01163336756.79
    176 rdf:rest rdf:nil
    177 Nede7e6a7a79a49c4958d74507fa51b1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Aged
    179 rdf:type schema:DefinedTerm
    180 Nf430082d512c4e07a83ed72c1eb0c8db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    181 schema:name Female
    182 rdf:type schema:DefinedTerm
    183 Nfb5a6061070847fe87be23822b1f3290 schema:issueNumber 1
    184 rdf:type schema:PublicationIssue
    185 Nfcbc3b39396c4668ae0083f4dde01c2b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Fluorodeoxyglucose F18
    187 rdf:type schema:DefinedTerm
    188 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    189 schema:name Medical and Health Sciences
    190 rdf:type schema:DefinedTerm
    191 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
    192 schema:name Cardiorespiratory Medicine and Haematology
    193 rdf:type schema:DefinedTerm
    194 sg:grant.8844214 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-020-75613-5
    195 rdf:type schema:MonetaryGrant
    196 sg:journal.1045337 schema:issn 2045-2322
    197 schema:name Scientific Reports
    198 schema:publisher Springer Nature
    199 rdf:type schema:Periodical
    200 sg:person.01101061462.02 schema:affiliation grid-institutes:grid.1374.1
    201 schema:familyName Teräs
    202 schema:givenName M.
    203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101061462.02
    204 rdf:type schema:Person
    205 sg:person.01163336756.79 schema:affiliation grid-institutes:grid.470895.7
    206 schema:familyName Knuuti
    207 schema:givenName J.
    208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163336756.79
    209 rdf:type schema:Person
    210 sg:person.01206306567.04 schema:affiliation grid-institutes:grid.470895.7
    211 schema:familyName Sipila
    212 schema:givenName H. T.
    213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206306567.04
    214 rdf:type schema:Person
    215 sg:person.01244327151.49 schema:affiliation grid-institutes:None
    216 schema:familyName Thielemans
    217 schema:givenName K.
    218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244327151.49
    219 rdf:type schema:Person
    220 sg:person.01300017613.20 schema:affiliation grid-institutes:grid.470895.7
    221 schema:familyName Teuho
    222 schema:givenName J.
    223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300017613.20
    224 rdf:type schema:Person
    225 sg:person.014042715235.25 schema:affiliation grid-institutes:grid.470895.7
    226 schema:familyName Klén
    227 schema:givenName R.
    228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014042715235.25
    229 rdf:type schema:Person
    230 sg:person.015673636475.93 schema:affiliation grid-institutes:grid.410552.7
    231 schema:familyName Noponen
    232 schema:givenName T.
    233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015673636475.93
    234 rdf:type schema:Person
    235 sg:person.016707111625.02 schema:affiliation grid-institutes:grid.1374.1
    236 schema:familyName Lehtonen
    237 schema:givenName E.
    238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016707111625.02
    239 rdf:type schema:Person
    240 sg:person.0745043221.92 schema:affiliation grid-institutes:grid.470895.7
    241 schema:familyName Hoppela
    242 schema:givenName E.
    243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745043221.92
    244 rdf:type schema:Person
    245 sg:pub.10.1007/s00259-007-0374-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034213847
    246 https://doi.org/10.1007/s00259-007-0374-9
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1007/s00259-007-0493-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010148911
    249 https://doi.org/10.1007/s00259-007-0493-3
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1007/s00259-008-0931-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048275554
    252 https://doi.org/10.1007/s00259-008-0931-x
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1007/s00259-009-1252-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039681053
    255 https://doi.org/10.1007/s00259-009-1252-4
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1007/s00259-019-04437-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1120145293
    258 https://doi.org/10.1007/s00259-019-04437-x
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1007/s00395-008-0717-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002871231
    261 https://doi.org/10.1007/s00395-008-0717-0
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1007/s12350-009-9163-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052289628
    264 https://doi.org/10.1007/s12350-009-9163-0
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1007/s12350-010-9322-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025713738
    267 https://doi.org/10.1007/s12350-010-9322-3
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1007/s12350-014-0057-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012768937
    270 https://doi.org/10.1007/s12350-014-0057-4
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1007/s12350-015-0094-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049623480
    273 https://doi.org/10.1007/s12350-015-0094-7
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1007/s12350-019-01613-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112097636
    276 https://doi.org/10.1007/s12350-019-01613-2
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1186/s40644-016-0086-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022739365
    279 https://doi.org/10.1186/s40644-016-0086-0
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1186/s40658-016-0138-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008175278
    282 https://doi.org/10.1186/s40658-016-0138-3
    283 rdf:type schema:CreativeWork
    284 grid-institutes:None schema:alternateName Hammersmith Imanet Ltd, London, UK
    285 schema:name Hammersmith Imanet Ltd, London, UK
    286 University College London, London, UK
    287 rdf:type schema:Organization
    288 grid-institutes:grid.1374.1 schema:alternateName Department of Future Technologies, University of Turku, Turku, Finland
    289 Institute of Biomedicine, University of Turku, Turku, Finland
    290 schema:name Department of Future Technologies, University of Turku, Turku, Finland
    291 Division of Medical Imaging, Department of Medical Physics, Turku University Hospital, Turku, Finland
    292 Institute of Biomedicine, University of Turku, Turku, Finland
    293 rdf:type schema:Organization
    294 grid-institutes:grid.410552.7 schema:alternateName Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
    295 schema:name Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
    296 Division of Medical Imaging, Department of Medical Physics, Turku University Hospital, Turku, Finland
    297 rdf:type schema:Organization
    298 grid-institutes:grid.470895.7 schema:alternateName Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
    299 schema:name Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
    300 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...