Local structure and electrochemical performances of sulfurized polyethylene glycol after heat treatment View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-10-09

AUTHORS

Nobuhiko Takeichi, Toshikatsu Kojima, Hiroshi Senoh, Hisanori Ando

ABSTRACT

Designing a high-capacity positive electrode material is critical for the advancement of lithium-ion batteries. Sulfurized polyethylene glycol (SPEG), containing ca. 61 wt% of sulfur, is a promising positive electrode material that exhibits a large initial discharge capacity of more than 800 mAh g-1. In this study, we present the local structure and electrochemical performances of SPEG. A high-energy X-ray total scattering experiment revealed that sulfur in SPEG is predominantly fragmented and bound to carbon atoms. The changes in the physicochemical properties of SPEG due to heat treatment with nitrogen gas at various temperatures were investigated using thermogravimetric analysis, Raman spectroscopy, X-ray absorption near edge structure, and extended X-ray absorption fine structure. Comparing the electrochemical performances of SPEG after heat treatment at various temperatures, it was found that S-S and C=S bonds contribute to the overall electrochemical performance of SPEG. More... »

PAGES

16918

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-020-74118-5

DOI

http://dx.doi.org/10.1038/s41598-020-74118-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1131539558

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/33037301


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Research Institute of Electrochemical Energy (RIECEN), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Research Institute of Electrochemical Energy (RIECEN), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takeichi", 
        "givenName": "Nobuhiko", 
        "id": "sg:person.010435207401.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010435207401.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Institute of Electrochemical Energy (RIECEN), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Research Institute of Electrochemical Energy (RIECEN), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kojima", 
        "givenName": "Toshikatsu", 
        "id": "sg:person.014317553777.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014317553777.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Institute of Electrochemical Energy (RIECEN), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Research Institute of Electrochemical Energy (RIECEN), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Senoh", 
        "givenName": "Hiroshi", 
        "id": "sg:person.011143534247.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011143534247.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Institute of Electrochemical Energy (RIECEN), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Research Institute of Electrochemical Energy (RIECEN), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ando", 
        "givenName": "Hisanori", 
        "id": "sg:person.011040335334.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011040335334.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1557/opl.2011.1363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067970397", 
          "https://doi.org/10.1557/opl.2011.1363"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-10-09", 
    "datePublishedReg": "2020-10-09", 
    "description": "Designing a high-capacity positive electrode material is critical for the advancement of lithium-ion batteries. Sulfurized polyethylene glycol (SPEG), containing ca. 61\u00a0wt% of sulfur, is a promising positive electrode material that exhibits a large initial discharge capacity of more than 800\u00a0mAh\u00a0g-1. In this study, we present the local structure and electrochemical performances of SPEG. A high-energy X-ray total scattering experiment revealed that sulfur in SPEG is predominantly fragmented and bound to carbon atoms. The changes in the physicochemical properties of SPEG due to heat treatment with nitrogen gas at various temperatures were investigated using thermogravimetric analysis, Raman spectroscopy, X-ray absorption near edge structure, and extended X-ray absorption fine structure. Comparing the electrochemical performances of SPEG after heat treatment at various temperatures, it was found that S-S and C=S bonds contribute to the overall electrochemical performance of SPEG.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-020-74118-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "positive electrode material", 
      "electrochemical performance", 
      "electrode materials", 
      "high-capacity positive electrode materials", 
      "promising positive electrode material", 
      "large initial discharge capacity", 
      "initial discharge capacity", 
      "overall electrochemical performance", 
      "lithium-ion batteries", 
      "polyethylene glycol", 
      "ray absorption fine structure", 
      "absorption fine structure", 
      "local structure", 
      "discharge capacity", 
      "thermogravimetric analysis", 
      "Raman spectroscopy", 
      "physicochemical properties", 
      "ray absorption", 
      "carbon atoms", 
      "edge structure", 
      "heat treatment", 
      "nitrogen gas", 
      "glycol", 
      "sulfur", 
      "structure", 
      "spectroscopy", 
      "fine structure", 
      "bonds", 
      "materials", 
      "atoms", 
      "batteries", 
      "temperature", 
      "scattering experiment", 
      "absorption", 
      "properties", 
      "Ca", 
      "gas", 
      "performance", 
      "SPEG", 
      "capacity", 
      "experiments", 
      "advancement", 
      "analysis", 
      "treatment", 
      "study", 
      "changes", 
      "ray total scattering experiment", 
      "total scattering experiment"
    ], 
    "name": "Local structure and electrochemical performances of sulfurized polyethylene glycol after heat treatment", 
    "pagination": "16918", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1131539558"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-020-74118-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "33037301"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-020-74118-5", 
      "https://app.dimensions.ai/details/publication/pub.1131539558"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_847.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-020-74118-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-020-74118-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-020-74118-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-020-74118-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-020-74118-5'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      22 PREDICATES      75 URIs      66 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-020-74118-5 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nf624d73571244469889a6fccc1260d1a
4 schema:citation sg:pub.10.1557/opl.2011.1363
5 schema:datePublished 2020-10-09
6 schema:datePublishedReg 2020-10-09
7 schema:description Designing a high-capacity positive electrode material is critical for the advancement of lithium-ion batteries. Sulfurized polyethylene glycol (SPEG), containing ca. 61 wt% of sulfur, is a promising positive electrode material that exhibits a large initial discharge capacity of more than 800 mAh g<sup>-1</sup>. In this study, we present the local structure and electrochemical performances of SPEG. A high-energy X-ray total scattering experiment revealed that sulfur in SPEG is predominantly fragmented and bound to carbon atoms. The changes in the physicochemical properties of SPEG due to heat treatment with nitrogen gas at various temperatures were investigated using thermogravimetric analysis, Raman spectroscopy, X-ray absorption near edge structure, and extended X-ray absorption fine structure. Comparing the electrochemical performances of SPEG after heat treatment at various temperatures, it was found that S-S and C=S bonds contribute to the overall electrochemical performance of SPEG.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N773b967399a54cbfa7c9b7d37c176d87
12 N8fe2ddb1ab634df69d0c07d28afb5240
13 sg:journal.1045337
14 schema:keywords Ca
15 Raman spectroscopy
16 SPEG
17 absorption
18 absorption fine structure
19 advancement
20 analysis
21 atoms
22 batteries
23 bonds
24 capacity
25 carbon atoms
26 changes
27 discharge capacity
28 edge structure
29 electrochemical performance
30 electrode materials
31 experiments
32 fine structure
33 gas
34 glycol
35 heat treatment
36 high-capacity positive electrode materials
37 initial discharge capacity
38 large initial discharge capacity
39 lithium-ion batteries
40 local structure
41 materials
42 nitrogen gas
43 overall electrochemical performance
44 performance
45 physicochemical properties
46 polyethylene glycol
47 positive electrode material
48 promising positive electrode material
49 properties
50 ray absorption
51 ray absorption fine structure
52 ray total scattering experiment
53 scattering experiment
54 spectroscopy
55 structure
56 study
57 sulfur
58 temperature
59 thermogravimetric analysis
60 total scattering experiment
61 treatment
62 schema:name Local structure and electrochemical performances of sulfurized polyethylene glycol after heat treatment
63 schema:pagination 16918
64 schema:productId N8d8d3d0579234f44a0576cdd4a726bd5
65 Na2b94dece66d4dc886fd8a187eb0582c
66 Nf5dc4f9c4634412fa31e933e15fa8154
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131539558
68 https://doi.org/10.1038/s41598-020-74118-5
69 schema:sdDatePublished 2022-01-01T18:53
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N3fe79812193641978d96a99f668e35d0
72 schema:url https://doi.org/10.1038/s41598-020-74118-5
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N17d03185bd6f45b4b96a55ec5fc70153 rdf:first sg:person.011143534247.36
77 rdf:rest N9edd18a326474facb4cd871ef39cbc49
78 N1e8d9811ecf14a7f834cf542ffbd89d2 rdf:first sg:person.014317553777.08
79 rdf:rest N17d03185bd6f45b4b96a55ec5fc70153
80 N3fe79812193641978d96a99f668e35d0 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 N773b967399a54cbfa7c9b7d37c176d87 schema:issueNumber 1
83 rdf:type schema:PublicationIssue
84 N8d8d3d0579234f44a0576cdd4a726bd5 schema:name doi
85 schema:value 10.1038/s41598-020-74118-5
86 rdf:type schema:PropertyValue
87 N8fe2ddb1ab634df69d0c07d28afb5240 schema:volumeNumber 10
88 rdf:type schema:PublicationVolume
89 N9edd18a326474facb4cd871ef39cbc49 rdf:first sg:person.011040335334.04
90 rdf:rest rdf:nil
91 Na2b94dece66d4dc886fd8a187eb0582c schema:name dimensions_id
92 schema:value pub.1131539558
93 rdf:type schema:PropertyValue
94 Nf5dc4f9c4634412fa31e933e15fa8154 schema:name pubmed_id
95 schema:value 33037301
96 rdf:type schema:PropertyValue
97 Nf624d73571244469889a6fccc1260d1a rdf:first sg:person.010435207401.35
98 rdf:rest N1e8d9811ecf14a7f834cf542ffbd89d2
99 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
100 schema:name Chemical Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
103 schema:name Physical Chemistry (incl. Structural)
104 rdf:type schema:DefinedTerm
105 sg:journal.1045337 schema:issn 2045-2322
106 schema:name Scientific Reports
107 schema:publisher Springer Nature
108 rdf:type schema:Periodical
109 sg:person.010435207401.35 schema:affiliation grid-institutes:None
110 schema:familyName Takeichi
111 schema:givenName Nobuhiko
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010435207401.35
113 rdf:type schema:Person
114 sg:person.011040335334.04 schema:affiliation grid-institutes:None
115 schema:familyName Ando
116 schema:givenName Hisanori
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011040335334.04
118 rdf:type schema:Person
119 sg:person.011143534247.36 schema:affiliation grid-institutes:None
120 schema:familyName Senoh
121 schema:givenName Hiroshi
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011143534247.36
123 rdf:type schema:Person
124 sg:person.014317553777.08 schema:affiliation grid-institutes:None
125 schema:familyName Kojima
126 schema:givenName Toshikatsu
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014317553777.08
128 rdf:type schema:Person
129 sg:pub.10.1557/opl.2011.1363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067970397
130 https://doi.org/10.1557/opl.2011.1363
131 rdf:type schema:CreativeWork
132 grid-institutes:None schema:alternateName Research Institute of Electrochemical Energy (RIECEN), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 Japan
133 schema:name Research Institute of Electrochemical Energy (RIECEN), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 Japan
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...