The prediction of swarming in honeybee colonies using vibrational spectra View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-06-16

AUTHORS

Michael-Thomas Ramsey, Martin Bencsik, Michael Ian Newton, Maritza Reyes, Maryline Pioz, Didier Crauser, Noa Simon Delso, Yves Le Conte

ABSTRACT

In this work, we disclose a non-invasive method for the monitoring and predicting of the swarming process within honeybee colonies, using vibro-acoustic information. Two machine learning algorithms are presented for the prediction of swarming, based on vibration data recorded using accelerometers placed in the heart of honeybee hives. Both algorithms successfully discriminate between colonies intending and not intending to swarm with a high degree of accuracy, over 90% for each method, with successful swarming prediction up to 30 days prior to the event. We show that instantaneous vibrational spectra predict the swarming within the swarming season only, and that this limitation can be lifted provided that the history of the evolution of the spectra is accounted for. We also disclose queen toots and quacks, showing statistics of the occurrence of queen pipes over the entire swarming season. From this we were able to determine that (1) tooting always precedes quacking, (2) under natural conditions there is a 4 to 7 day period without queen tooting following the exit of the primary swarm, and (3) human intervention, such as queen clipping and the opening of a hive, causes strong interferences with important mechanisms for the prevention of simultaneous rival queen emergence. More... »

PAGES

9798

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-020-66115-5

DOI

http://dx.doi.org/10.1038/s41598-020-66115-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1128494140

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/32546693


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bees", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Behavior, Animal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Seasons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectrum Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vibration", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nottingham Trent University, School of Science and Technology, Clifton Lane, NG11 8NS, Nottingham, United Kingdom", 
          "id": "http://www.grid.ac/institutes/grid.12361.37", 
          "name": [
            "Nottingham Trent University, School of Science and Technology, Clifton Lane, NG11 8NS, Nottingham, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ramsey", 
        "givenName": "Michael-Thomas", 
        "id": "sg:person.013776426507.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013776426507.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nottingham Trent University, School of Science and Technology, Clifton Lane, NG11 8NS, Nottingham, United Kingdom", 
          "id": "http://www.grid.ac/institutes/grid.12361.37", 
          "name": [
            "Nottingham Trent University, School of Science and Technology, Clifton Lane, NG11 8NS, Nottingham, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bencsik", 
        "givenName": "Martin", 
        "id": "sg:person.01234044621.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234044621.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nottingham Trent University, School of Science and Technology, Clifton Lane, NG11 8NS, Nottingham, United Kingdom", 
          "id": "http://www.grid.ac/institutes/grid.12361.37", 
          "name": [
            "Nottingham Trent University, School of Science and Technology, Clifton Lane, NG11 8NS, Nottingham, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Newton", 
        "givenName": "Michael Ian", 
        "id": "sg:person.0624702152.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624702152.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "l\u2019Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE), UR 406 Abeilles et Environnement, Domaine Saint-Paul, 84914, Avignon, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "l\u2019Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE), UR 406 Abeilles et Environnement, Domaine Saint-Paul, 84914, Avignon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reyes", 
        "givenName": "Maritza", 
        "id": "sg:person.012351722045.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012351722045.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "l\u2019Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE), UR 406 Abeilles et Environnement, Domaine Saint-Paul, 84914, Avignon, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "l\u2019Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE), UR 406 Abeilles et Environnement, Domaine Saint-Paul, 84914, Avignon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pioz", 
        "givenName": "Maryline", 
        "id": "sg:person.01260656727.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260656727.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "l\u2019Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE), UR 406 Abeilles et Environnement, Domaine Saint-Paul, 84914, Avignon, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "l\u2019Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE), UR 406 Abeilles et Environnement, Domaine Saint-Paul, 84914, Avignon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crauser", 
        "givenName": "Didier", 
        "id": "sg:person.0637174341.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637174341.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre Apicole de Recherche et d\u2019Information, CARI, 4, Place Croix du Sud, B-1348, Louvain-La-Neuve, Belgium", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Centre Apicole de Recherche et d\u2019Information, CARI, 4, Place Croix du Sud, B-1348, Louvain-La-Neuve, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delso", 
        "givenName": "Noa Simon", 
        "id": "sg:person.07700154247.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07700154247.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "l\u2019Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE), UR 406 Abeilles et Environnement, Domaine Saint-Paul, 84914, Avignon, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "l\u2019Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE), UR 406 Abeilles et Environnement, Domaine Saint-Paul, 84914, Avignon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Le Conte", 
        "givenName": "Yves", 
        "id": "sg:person.01223471277.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223471277.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41598-018-32931-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107245498", 
          "https://doi.org/10.1038/s41598-018-32931-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02224083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028555853", 
          "https://doi.org/10.1007/bf02224083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00603817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007221798", 
          "https://doi.org/10.1007/bf00603817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002650050536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053160430", 
          "https://doi.org/10.1007/s002650050536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00339456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085725671", 
          "https://doi.org/10.1007/bf00339456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02226919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041221169", 
          "https://doi.org/10.1007/bf02226919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/184842a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042138953", 
          "https://doi.org/10.1038/184842a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1051/apido:19930309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053217929", 
          "https://doi.org/10.1051/apido:19930309"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-06-16", 
    "datePublishedReg": "2020-06-16", 
    "description": "In this work, we disclose a non-invasive method for the monitoring and predicting of the swarming process within honeybee colonies, using vibro-acoustic information. Two machine learning algorithms are presented for the prediction of swarming, based on vibration data recorded using accelerometers placed in the heart of honeybee hives. Both algorithms successfully discriminate between colonies intending and not intending to swarm with a high degree of accuracy, over 90% for each method, with successful swarming prediction up to 30 days prior to the event. We show that instantaneous vibrational spectra predict the swarming within the swarming season only, and that this limitation can be lifted provided that the history of the evolution of the spectra is accounted for. We also disclose queen toots and quacks, showing statistics of the occurrence of queen pipes over the entire swarming season. From this we were able to determine that (1) tooting always precedes quacking, (2) under natural conditions there is a 4 to 7 day period without queen tooting following the exit of the primary swarm, and (3) human intervention, such as queen clipping and the opening of a hive, causes strong interferences with important mechanisms for the prevention of simultaneous rival queen emergence.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-020-66115-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3793000", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "human intervention", 
      "algorithm", 
      "vibration data", 
      "machine", 
      "primary swarm", 
      "hives", 
      "swarm", 
      "prediction", 
      "accuracy", 
      "strong interference", 
      "information", 
      "Predicting", 
      "swarming", 
      "method", 
      "toot", 
      "monitoring", 
      "accelerometer", 
      "work", 
      "high degree", 
      "limitations", 
      "data", 
      "interference", 
      "process", 
      "statistics", 
      "emergence", 
      "honeybee colonies", 
      "honeybee hives", 
      "evolution", 
      "events", 
      "mechanism", 
      "non-invasive method", 
      "degree", 
      "colonies", 
      "conditions", 
      "exit", 
      "spectra", 
      "heart", 
      "pipe", 
      "important mechanism", 
      "occurrence", 
      "queen emergence", 
      "history", 
      "natural conditions", 
      "intervention", 
      "prevention", 
      "days", 
      "season", 
      "period", 
      "queens", 
      "opening", 
      "quacks", 
      "quacking", 
      "day period", 
      "vibrational spectra"
    ], 
    "name": "The prediction of swarming in honeybee colonies using vibrational spectra", 
    "pagination": "9798", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1128494140"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-020-66115-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "32546693"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-020-66115-5", 
      "https://app.dimensions.ai/details/publication/pub.1128494140"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_863.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-020-66115-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-020-66115-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-020-66115-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-020-66115-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-020-66115-5'


 

This table displays all metadata directly associated to this object as RDF triples.

227 TRIPLES      22 PREDICATES      94 URIs      78 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-020-66115-5 schema:about N11a683c238174edd9d3a9efeacbb75b5
2 N1732e452728a45239084e15a756831bb
3 N284d3b0721b34fd88269da33c0f3c522
4 N3f019757c0944be0912ec43d4121c5f8
5 N75613f0b618447939a81835bcbe52c43
6 Nbcb4d1eb93084bc4bd683d318b545d07
7 anzsrc-for:08
8 anzsrc-for:0801
9 schema:author Nc164f3c9220c4737ae131a41eb8bf710
10 schema:citation sg:pub.10.1007/bf00339456
11 sg:pub.10.1007/bf00603817
12 sg:pub.10.1007/bf02224083
13 sg:pub.10.1007/bf02226919
14 sg:pub.10.1007/s002650050536
15 sg:pub.10.1038/184842a0
16 sg:pub.10.1038/s41598-018-32931-z
17 sg:pub.10.1051/apido:19930309
18 schema:datePublished 2020-06-16
19 schema:datePublishedReg 2020-06-16
20 schema:description In this work, we disclose a non-invasive method for the monitoring and predicting of the swarming process within honeybee colonies, using vibro-acoustic information. Two machine learning algorithms are presented for the prediction of swarming, based on vibration data recorded using accelerometers placed in the heart of honeybee hives. Both algorithms successfully discriminate between colonies intending and not intending to swarm with a high degree of accuracy, over 90% for each method, with successful swarming prediction up to 30 days prior to the event. We show that instantaneous vibrational spectra predict the swarming within the swarming season only, and that this limitation can be lifted provided that the history of the evolution of the spectra is accounted for. We also disclose queen toots and quacks, showing statistics of the occurrence of queen pipes over the entire swarming season. From this we were able to determine that (1) tooting always precedes quacking, (2) under natural conditions there is a 4 to 7 day period without queen tooting following the exit of the primary swarm, and (3) human intervention, such as queen clipping and the opening of a hive, causes strong interferences with important mechanisms for the prevention of simultaneous rival queen emergence.
21 schema:genre article
22 schema:inLanguage en
23 schema:isAccessibleForFree true
24 schema:isPartOf N05f1ec4b72814d49ad40c498f7c0038a
25 N66385bc35a9249e38ac5d9a778a57bc9
26 sg:journal.1045337
27 schema:keywords Predicting
28 accelerometer
29 accuracy
30 algorithm
31 colonies
32 conditions
33 data
34 day period
35 days
36 degree
37 emergence
38 events
39 evolution
40 exit
41 heart
42 high degree
43 history
44 hives
45 honeybee colonies
46 honeybee hives
47 human intervention
48 important mechanism
49 information
50 interference
51 intervention
52 limitations
53 machine
54 mechanism
55 method
56 monitoring
57 natural conditions
58 non-invasive method
59 occurrence
60 opening
61 period
62 pipe
63 prediction
64 prevention
65 primary swarm
66 process
67 quacking
68 quacks
69 queen emergence
70 queens
71 season
72 spectra
73 statistics
74 strong interference
75 swarm
76 swarming
77 toot
78 vibration data
79 vibrational spectra
80 work
81 schema:name The prediction of swarming in honeybee colonies using vibrational spectra
82 schema:pagination 9798
83 schema:productId N0b7046f653c7458f8dbd7e7725cdb696
84 N3410de9ebff4456e95c96747983f8b25
85 N45c4bdd0d17f496a826f732bf1a4cbea
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128494140
87 https://doi.org/10.1038/s41598-020-66115-5
88 schema:sdDatePublished 2022-06-01T22:20
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher N2be9fcf7671a43488bf66a65b9800d25
91 schema:url https://doi.org/10.1038/s41598-020-66115-5
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N02ca64f65a984f24a31fcfe4b7b795d1 rdf:first sg:person.012351722045.18
96 rdf:rest Naab33a54cfd044b9977c865c72379724
97 N05f1ec4b72814d49ad40c498f7c0038a schema:issueNumber 1
98 rdf:type schema:PublicationIssue
99 N0b7046f653c7458f8dbd7e7725cdb696 schema:name doi
100 schema:value 10.1038/s41598-020-66115-5
101 rdf:type schema:PropertyValue
102 N11a683c238174edd9d3a9efeacbb75b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Animals
104 rdf:type schema:DefinedTerm
105 N1732e452728a45239084e15a756831bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Spectrum Analysis
107 rdf:type schema:DefinedTerm
108 N277fa794f7424d3e8fc131b329229fb2 rdf:first sg:person.0637174341.97
109 rdf:rest Nbc2c59f1285d4289ad780d33babfd6ad
110 N284d3b0721b34fd88269da33c0f3c522 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Seasons
112 rdf:type schema:DefinedTerm
113 N2be9fcf7671a43488bf66a65b9800d25 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 N3410de9ebff4456e95c96747983f8b25 schema:name pubmed_id
116 schema:value 32546693
117 rdf:type schema:PropertyValue
118 N3f019757c0944be0912ec43d4121c5f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Behavior, Animal
120 rdf:type schema:DefinedTerm
121 N45c4bdd0d17f496a826f732bf1a4cbea schema:name dimensions_id
122 schema:value pub.1128494140
123 rdf:type schema:PropertyValue
124 N5f800ddfab73429299424c619a2283d3 rdf:first sg:person.0624702152.65
125 rdf:rest N02ca64f65a984f24a31fcfe4b7b795d1
126 N66385bc35a9249e38ac5d9a778a57bc9 schema:volumeNumber 10
127 rdf:type schema:PublicationVolume
128 N75613f0b618447939a81835bcbe52c43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Vibration
130 rdf:type schema:DefinedTerm
131 Na6047be2e15f47ecbafde5a6bfe9ffb8 rdf:first sg:person.01223471277.66
132 rdf:rest rdf:nil
133 Naab33a54cfd044b9977c865c72379724 rdf:first sg:person.01260656727.83
134 rdf:rest N277fa794f7424d3e8fc131b329229fb2
135 Nbc2c59f1285d4289ad780d33babfd6ad rdf:first sg:person.07700154247.27
136 rdf:rest Na6047be2e15f47ecbafde5a6bfe9ffb8
137 Nbcb4d1eb93084bc4bd683d318b545d07 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Bees
139 rdf:type schema:DefinedTerm
140 Nc164f3c9220c4737ae131a41eb8bf710 rdf:first sg:person.013776426507.13
141 rdf:rest Ne87c5db9792d48578b59792d7fa65fcb
142 Ne87c5db9792d48578b59792d7fa65fcb rdf:first sg:person.01234044621.07
143 rdf:rest N5f800ddfab73429299424c619a2283d3
144 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
145 schema:name Information and Computing Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
148 schema:name Artificial Intelligence and Image Processing
149 rdf:type schema:DefinedTerm
150 sg:grant.3793000 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-020-66115-5
151 rdf:type schema:MonetaryGrant
152 sg:journal.1045337 schema:issn 2045-2322
153 schema:name Scientific Reports
154 schema:publisher Springer Nature
155 rdf:type schema:Periodical
156 sg:person.01223471277.66 schema:affiliation grid-institutes:None
157 schema:familyName Le Conte
158 schema:givenName Yves
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223471277.66
160 rdf:type schema:Person
161 sg:person.01234044621.07 schema:affiliation grid-institutes:grid.12361.37
162 schema:familyName Bencsik
163 schema:givenName Martin
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234044621.07
165 rdf:type schema:Person
166 sg:person.012351722045.18 schema:affiliation grid-institutes:None
167 schema:familyName Reyes
168 schema:givenName Maritza
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012351722045.18
170 rdf:type schema:Person
171 sg:person.01260656727.83 schema:affiliation grid-institutes:None
172 schema:familyName Pioz
173 schema:givenName Maryline
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260656727.83
175 rdf:type schema:Person
176 sg:person.013776426507.13 schema:affiliation grid-institutes:grid.12361.37
177 schema:familyName Ramsey
178 schema:givenName Michael-Thomas
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013776426507.13
180 rdf:type schema:Person
181 sg:person.0624702152.65 schema:affiliation grid-institutes:grid.12361.37
182 schema:familyName Newton
183 schema:givenName Michael Ian
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624702152.65
185 rdf:type schema:Person
186 sg:person.0637174341.97 schema:affiliation grid-institutes:None
187 schema:familyName Crauser
188 schema:givenName Didier
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637174341.97
190 rdf:type schema:Person
191 sg:person.07700154247.27 schema:affiliation grid-institutes:None
192 schema:familyName Delso
193 schema:givenName Noa Simon
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07700154247.27
195 rdf:type schema:Person
196 sg:pub.10.1007/bf00339456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085725671
197 https://doi.org/10.1007/bf00339456
198 rdf:type schema:CreativeWork
199 sg:pub.10.1007/bf00603817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007221798
200 https://doi.org/10.1007/bf00603817
201 rdf:type schema:CreativeWork
202 sg:pub.10.1007/bf02224083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028555853
203 https://doi.org/10.1007/bf02224083
204 rdf:type schema:CreativeWork
205 sg:pub.10.1007/bf02226919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041221169
206 https://doi.org/10.1007/bf02226919
207 rdf:type schema:CreativeWork
208 sg:pub.10.1007/s002650050536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053160430
209 https://doi.org/10.1007/s002650050536
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/184842a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042138953
212 https://doi.org/10.1038/184842a0
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/s41598-018-32931-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1107245498
215 https://doi.org/10.1038/s41598-018-32931-z
216 rdf:type schema:CreativeWork
217 sg:pub.10.1051/apido:19930309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053217929
218 https://doi.org/10.1051/apido:19930309
219 rdf:type schema:CreativeWork
220 grid-institutes:None schema:alternateName Centre Apicole de Recherche et d’Information, CARI, 4, Place Croix du Sud, B-1348, Louvain-La-Neuve, Belgium
221 l’Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE), UR 406 Abeilles et Environnement, Domaine Saint-Paul, 84914, Avignon, France
222 schema:name Centre Apicole de Recherche et d’Information, CARI, 4, Place Croix du Sud, B-1348, Louvain-La-Neuve, Belgium
223 l’Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE), UR 406 Abeilles et Environnement, Domaine Saint-Paul, 84914, Avignon, France
224 rdf:type schema:Organization
225 grid-institutes:grid.12361.37 schema:alternateName Nottingham Trent University, School of Science and Technology, Clifton Lane, NG11 8NS, Nottingham, United Kingdom
226 schema:name Nottingham Trent University, School of Science and Technology, Clifton Lane, NG11 8NS, Nottingham, United Kingdom
227 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...