Future continental summer warming constrained by the present-day seasonal cycle of surface hydrology View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-03-13

AUTHORS

F. M. Selten, R. Bintanja, R. Vautard, B. J. J. M. van den Hurk

ABSTRACT

Present-day land temperatures simulated by state-of-the-art global climate models exhibit considerable uncertainty. Generally it is assumed that these temperature biases do not affect the projected warming in response to rising greenhouse gas concentrations (i.e. drop out by subtracting projected and present-day temperatures), but for specific regions and seasons this assumption is invalid. Here we show that, on the contrary, for large continental regions, such as Europe, state-of-the art global climate models with a warm summer bias project a relatively strong warming. This is because continental summer temperatures depend chiefly on soil drying in response to spring and summer solar radiation increase: models that dry fastest (due to the interaction of clouds, convection and soil hydrology) exhibit the strongest reductions in evaporation and consequently a more pronounced end-of-summer warming. These physical mechanisms acting on a seasonal timescale also govern the long-term climate response to greenhouse forcing over continental regions in summer. Combining these findings, we use the current model biases to reduce the uncertainty range in the projected warming over Europe from 3.6–8.6 °C to 4.6–7.3 °C (a reduction of about 50%). Given the huge potential impacts of the warmest projections on health, agriculture and water management, constraining the range of future summer climate change is imperative for relevant mitigation and adaptation strategies. More... »

PAGES

4721

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-020-61721-9

DOI

http://dx.doi.org/10.1038/s41598-020-61721-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1125618920

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/32170293


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.8653.8", 
          "name": [
            "Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Selten", 
        "givenName": "F. M.", 
        "id": "sg:person.011445274037.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011445274037.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands", 
            "Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bintanja", 
        "givenName": "R.", 
        "id": "sg:person.014735470066.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014735470066.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire des Sciences du Climat et de l\u2019Environnement (CEA/CNRS/UVSQ), Institut Pierre-Simon Laplace, Gif sur Yvette, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Laboratoire des Sciences du Climat et de l\u2019Environnement (CEA/CNRS/UVSQ), Institut Pierre-Simon Laplace, Gif sur Yvette, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vautard", 
        "givenName": "R.", 
        "id": "sg:person.0637243716.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637243716.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Free University of Amsterdam, Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.12380.38", 
          "name": [
            "Deltaris, Delft, The Netherlands", 
            "Free University of Amsterdam, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van den Hurk", 
        "givenName": "B. J. J. M.", 
        "id": "sg:person.010707714545.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707714545.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nclimate1454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050231743", 
          "https://doi.org/10.1038/nclimate1454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-013-1707-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043453583", 
          "https://doi.org/10.1007/s00382-013-1707-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-011-1228-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027144462", 
          "https://doi.org/10.1007/s00382-011-1228-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature17441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042439166", 
          "https://doi.org/10.1038/nature17441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027208376", 
          "https://doi.org/10.1038/nature04188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-010-9864-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026169405", 
          "https://doi.org/10.1007/s10584-010-9864-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006979406", 
          "https://doi.org/10.1038/nature02300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo2141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006668095", 
          "https://doi.org/10.1038/ngeo2141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010784727448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037550987", 
          "https://doi.org/10.1023/a:1010784727448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41558-019-0436-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112855003", 
          "https://doi.org/10.1038/s41558-019-0436-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate1536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005752180", 
          "https://doi.org/10.1038/nclimate1536"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-03-13", 
    "datePublishedReg": "2020-03-13", 
    "description": "Present-day land temperatures simulated by state-of-the-art global climate models exhibit considerable uncertainty. Generally it is assumed that these temperature biases do not affect the projected warming in response to rising greenhouse gas concentrations (i.e. drop out by subtracting projected and present-day temperatures), but for specific regions and seasons this assumption is invalid. Here we show that, on the contrary, for large continental regions, such as Europe, state-of-the art global climate models with a warm summer bias project a relatively strong warming. This is because continental summer temperatures depend chiefly on soil drying in response to spring and summer solar radiation increase: models that dry fastest (due to the interaction of clouds, convection and soil hydrology) exhibit the strongest reductions in evaporation and consequently a more pronounced end-of-summer warming. These physical mechanisms acting on a seasonal timescale also govern the long-term climate response to greenhouse forcing over continental regions in summer. Combining these findings, we use the current model biases to reduce the uncertainty range in the projected warming over Europe from 3.6\u20138.6\u2009\u00b0C to 4.6\u20137.3\u2009\u00b0C (a reduction of about 50%). Given the huge potential impacts of the warmest projections on health, agriculture and water management, constraining the range of future summer climate change is imperative for relevant mitigation and adaptation strategies.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-020-61721-9", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7676791", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "art global climate models", 
      "global climate models", 
      "climate models", 
      "continental regions", 
      "summer warming", 
      "present-day seasonal cycle", 
      "long-term climate response", 
      "large continental regions", 
      "summer climate change", 
      "greenhouse gas concentrations", 
      "solar radiation increases", 
      "strong warming", 
      "model biases", 
      "surface hydrology", 
      "land temperature", 
      "seasonal timescales", 
      "climate response", 
      "warmest projections", 
      "temperature biases", 
      "seasonal cycle", 
      "huge potential impact", 
      "summer temperatures", 
      "uncertainty range", 
      "climate change", 
      "warming", 
      "water management", 
      "adaptation strategies", 
      "gas concentration", 
      "relevant mitigation", 
      "considerable uncertainty", 
      "radiation increases", 
      "physical mechanisms", 
      "potential impact", 
      "biases", 
      "hydrology", 
      "region", 
      "timescales", 
      "summer", 
      "spring", 
      "evaporation", 
      "season", 
      "Europe", 
      "strong reduction", 
      "specific regions", 
      "temperature", 
      "soil", 
      "uncertainty", 
      "projections", 
      "mitigation", 
      "model", 
      "agriculture", 
      "cycle", 
      "range", 
      "changes", 
      "concentration", 
      "impact", 
      "response", 
      "project", 
      "increase", 
      "end", 
      "greenhouse", 
      "assumption", 
      "state", 
      "contrary", 
      "reduction", 
      "management", 
      "mechanism", 
      "findings", 
      "strategies", 
      "health"
    ], 
    "name": "Future continental summer warming constrained by the present-day seasonal cycle of surface hydrology", 
    "pagination": "4721", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1125618920"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-020-61721-9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "32170293"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-020-61721-9", 
      "https://app.dimensions.ai/details/publication/pub.1125618920"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_844.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-020-61721-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-020-61721-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-020-61721-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-020-61721-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-020-61721-9'


 

This table displays all metadata directly associated to this object as RDF triples.

208 TRIPLES      21 PREDICATES      106 URIs      87 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-020-61721-9 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author Nec0d4e7aa57e49f98413df1dda2e2d97
4 schema:citation sg:pub.10.1007/s00382-011-1228-5
5 sg:pub.10.1007/s00382-013-1707-y
6 sg:pub.10.1007/s10584-010-9864-z
7 sg:pub.10.1023/a:1010784727448
8 sg:pub.10.1038/nature02300
9 sg:pub.10.1038/nature04188
10 sg:pub.10.1038/nature17441
11 sg:pub.10.1038/nclimate1454
12 sg:pub.10.1038/nclimate1536
13 sg:pub.10.1038/ngeo2141
14 sg:pub.10.1038/s41558-019-0436-6
15 schema:datePublished 2020-03-13
16 schema:datePublishedReg 2020-03-13
17 schema:description Present-day land temperatures simulated by state-of-the-art global climate models exhibit considerable uncertainty. Generally it is assumed that these temperature biases do not affect the projected warming in response to rising greenhouse gas concentrations (i.e. drop out by subtracting projected and present-day temperatures), but for specific regions and seasons this assumption is invalid. Here we show that, on the contrary, for large continental regions, such as Europe, state-of-the art global climate models with a warm summer bias project a relatively strong warming. This is because continental summer temperatures depend chiefly on soil drying in response to spring and summer solar radiation increase: models that dry fastest (due to the interaction of clouds, convection and soil hydrology) exhibit the strongest reductions in evaporation and consequently a more pronounced end-of-summer warming. These physical mechanisms acting on a seasonal timescale also govern the long-term climate response to greenhouse forcing over continental regions in summer. Combining these findings, we use the current model biases to reduce the uncertainty range in the projected warming over Europe from 3.6–8.6 °C to 4.6–7.3 °C (a reduction of about 50%). Given the huge potential impacts of the warmest projections on health, agriculture and water management, constraining the range of future summer climate change is imperative for relevant mitigation and adaptation strategies.
18 schema:genre article
19 schema:isAccessibleForFree true
20 schema:isPartOf N31e533b4ed0f44b986530774074dbf43
21 N9b76ff1982954207a13f376b954bea8d
22 sg:journal.1045337
23 schema:keywords Europe
24 adaptation strategies
25 agriculture
26 art global climate models
27 assumption
28 biases
29 changes
30 climate change
31 climate models
32 climate response
33 concentration
34 considerable uncertainty
35 continental regions
36 contrary
37 cycle
38 end
39 evaporation
40 findings
41 gas concentration
42 global climate models
43 greenhouse
44 greenhouse gas concentrations
45 health
46 huge potential impact
47 hydrology
48 impact
49 increase
50 land temperature
51 large continental regions
52 long-term climate response
53 management
54 mechanism
55 mitigation
56 model
57 model biases
58 physical mechanisms
59 potential impact
60 present-day seasonal cycle
61 project
62 projections
63 radiation increases
64 range
65 reduction
66 region
67 relevant mitigation
68 response
69 season
70 seasonal cycle
71 seasonal timescales
72 soil
73 solar radiation increases
74 specific regions
75 spring
76 state
77 strategies
78 strong reduction
79 strong warming
80 summer
81 summer climate change
82 summer temperatures
83 summer warming
84 surface hydrology
85 temperature
86 temperature biases
87 timescales
88 uncertainty
89 uncertainty range
90 warmest projections
91 warming
92 water management
93 schema:name Future continental summer warming constrained by the present-day seasonal cycle of surface hydrology
94 schema:pagination 4721
95 schema:productId N0d2c5360fd934132a8ee85138c3a5c96
96 Naf771f49c1c648d681550534c721f811
97 Nfa86fce5859b494ab1f7128b79fdca6f
98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125618920
99 https://doi.org/10.1038/s41598-020-61721-9
100 schema:sdDatePublished 2022-10-01T06:46
101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
102 schema:sdPublisher N2d91c813ba1648cdbd718339a22ce970
103 schema:url https://doi.org/10.1038/s41598-020-61721-9
104 sgo:license sg:explorer/license/
105 sgo:sdDataset articles
106 rdf:type schema:ScholarlyArticle
107 N0d2c5360fd934132a8ee85138c3a5c96 schema:name pubmed_id
108 schema:value 32170293
109 rdf:type schema:PropertyValue
110 N2d91c813ba1648cdbd718339a22ce970 schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 N31e533b4ed0f44b986530774074dbf43 schema:issueNumber 1
113 rdf:type schema:PublicationIssue
114 N523e476336c64d87ba3bfeda5f143364 rdf:first sg:person.010707714545.84
115 rdf:rest rdf:nil
116 N7c7ff399c8d44d2d952799c715df036a rdf:first sg:person.014735470066.98
117 rdf:rest Nb4a6b60815d7448f9a1d1f6959a7fa2b
118 N9b76ff1982954207a13f376b954bea8d schema:volumeNumber 10
119 rdf:type schema:PublicationVolume
120 Naf771f49c1c648d681550534c721f811 schema:name dimensions_id
121 schema:value pub.1125618920
122 rdf:type schema:PropertyValue
123 Nb4a6b60815d7448f9a1d1f6959a7fa2b rdf:first sg:person.0637243716.97
124 rdf:rest N523e476336c64d87ba3bfeda5f143364
125 Nec0d4e7aa57e49f98413df1dda2e2d97 rdf:first sg:person.011445274037.60
126 rdf:rest N7c7ff399c8d44d2d952799c715df036a
127 Nfa86fce5859b494ab1f7128b79fdca6f schema:name doi
128 schema:value 10.1038/s41598-020-61721-9
129 rdf:type schema:PropertyValue
130 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
131 schema:name Earth Sciences
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
134 schema:name Physical Geography and Environmental Geoscience
135 rdf:type schema:DefinedTerm
136 sg:grant.7676791 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-020-61721-9
137 rdf:type schema:MonetaryGrant
138 sg:journal.1045337 schema:issn 2045-2322
139 schema:name Scientific Reports
140 schema:publisher Springer Nature
141 rdf:type schema:Periodical
142 sg:person.010707714545.84 schema:affiliation grid-institutes:grid.12380.38
143 schema:familyName van den Hurk
144 schema:givenName B. J. J. M.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707714545.84
146 rdf:type schema:Person
147 sg:person.011445274037.60 schema:affiliation grid-institutes:grid.8653.8
148 schema:familyName Selten
149 schema:givenName F. M.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011445274037.60
151 rdf:type schema:Person
152 sg:person.014735470066.98 schema:affiliation grid-institutes:grid.4830.f
153 schema:familyName Bintanja
154 schema:givenName R.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014735470066.98
156 rdf:type schema:Person
157 sg:person.0637243716.97 schema:affiliation grid-institutes:None
158 schema:familyName Vautard
159 schema:givenName R.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637243716.97
161 rdf:type schema:Person
162 sg:pub.10.1007/s00382-011-1228-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027144462
163 https://doi.org/10.1007/s00382-011-1228-5
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s00382-013-1707-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1043453583
166 https://doi.org/10.1007/s00382-013-1707-y
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s10584-010-9864-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1026169405
169 https://doi.org/10.1007/s10584-010-9864-z
170 rdf:type schema:CreativeWork
171 sg:pub.10.1023/a:1010784727448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037550987
172 https://doi.org/10.1023/a:1010784727448
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/nature02300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006979406
175 https://doi.org/10.1038/nature02300
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/nature04188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027208376
178 https://doi.org/10.1038/nature04188
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nature17441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042439166
181 https://doi.org/10.1038/nature17441
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nclimate1454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050231743
184 https://doi.org/10.1038/nclimate1454
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/nclimate1536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005752180
187 https://doi.org/10.1038/nclimate1536
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/ngeo2141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006668095
190 https://doi.org/10.1038/ngeo2141
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/s41558-019-0436-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112855003
193 https://doi.org/10.1038/s41558-019-0436-6
194 rdf:type schema:CreativeWork
195 grid-institutes:None schema:alternateName Laboratoire des Sciences du Climat et de l’Environnement (CEA/CNRS/UVSQ), Institut Pierre-Simon Laplace, Gif sur Yvette, France
196 schema:name Laboratoire des Sciences du Climat et de l’Environnement (CEA/CNRS/UVSQ), Institut Pierre-Simon Laplace, Gif sur Yvette, France
197 rdf:type schema:Organization
198 grid-institutes:grid.12380.38 schema:alternateName Free University of Amsterdam, Amsterdam, The Netherlands
199 schema:name Deltaris, Delft, The Netherlands
200 Free University of Amsterdam, Amsterdam, The Netherlands
201 rdf:type schema:Organization
202 grid-institutes:grid.4830.f schema:alternateName Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen, The Netherlands
203 schema:name Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen, The Netherlands
204 Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
205 rdf:type schema:Organization
206 grid-institutes:grid.8653.8 schema:alternateName Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
207 schema:name Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
208 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...