Postmenopause as a key factor in the composition of the Endometrial Cancer Microbiome (ECbiome) View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12-16

AUTHORS

Dana M. Walsh, Alexis N. Hokenstad, Jun Chen, Jaeyun Sung, Gregory D. Jenkins, Nicholas Chia, Heidi Nelson, Andrea Mariani, Marina R. S. Walther-Antonio

ABSTRACT

Incidence rates for endometrial cancer (EC) are rising, particularly in postmenopausal and obese women. Previously, we showed that the uterine and vaginal microbiome distinguishes patients with EC from those without. Here, we sought to examine the impact of patient factors (such as menopause status, body mass index, and vaginal pH) in the microbiome in the absence of EC and how these might contribute to the microbiome signature in EC. We find that each factor independently alters the microbiome and identified postmenopausal status as the main driver of a polymicrobial network associated with EC (ECbiome). We identified Porphyromas somerae presence as the most predictive microbial marker of EC and we confirm this using targeted qPCR, which could be of use in detecting EC in high-risk, asymptomatic women. Given the established pathogenic behavior of P. somerae and accompanying network in tissue infections and ulcers, future investigation into their role in EC is warranted. More... »

PAGES

19213

References to SciGraph publications

  • 2009-10-27. Evaluation of the bacterial diversity among and within individual venous leg ulcers using bacterial tag-encoded FLX and Titanium amplicon pyrosequencing and metagenomic approaches in BMC MICROBIOLOGY
  • 2012-09-24. Non-contiguous finished genome sequence and description of Paenibacillus senegalensis sp. nov. in ENVIRONMENTAL MICROBIOME
  • 2017-10-17. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases in NATURE COMMUNICATIONS
  • 2016-03-22. One step closer to understanding the role of bacteria in diabetic foot ulcers: characterising the microbiome of ulcers in BMC MICROBIOLOGY
  • 2012-05. Non-contiguous finished genome sequence and description of Anaerococcus vaginalis in ENVIRONMENTAL MICROBIOME
  • 2010-09-21. Evaluation of the bacterial diversity of Pressure ulcers using bTEFAP pyrosequencing in BMC MEDICAL GENOMICS
  • 2012-09. Non contiguous-finished genome sequence and description of Peptoniphilus grossensis sp. nov. in ENVIRONMENTAL MICROBIOME
  • 2016-01-19. Presence of Porphyromonas gingivalis in esophagus and its association with the clinicopathological characteristics and survival in patients with esophageal cancer in INFECTIOUS AGENTS AND CANCER
  • 2016-07-25. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies in NATURE BIOTECHNOLOGY
  • 2016-11-25. Potential contribution of the uterine microbiome in the development of endometrial cancer in GENOME MEDICINE
  • 2014-05-09. Microbial mucosal colonic shifts associated with the development of colorectal cancer reveal the presence of different bacterial and archaeal biomarkers in JOURNAL OF GASTROENTEROLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-019-55720-8

    DOI

    http://dx.doi.org/10.1038/s41598-019-55720-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1123433155

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/31844128


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Body Mass Index", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Endometrial Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Endometrium", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microbiota", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Porphyromonas", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Postmenopause", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Risk Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Uterus", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Vagina", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA", 
              "id": "http://www.grid.ac/institutes/grid.66875.3a", 
              "name": [
                "Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA", 
                "Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Walsh", 
            "givenName": "Dana M.", 
            "id": "sg:person.016500364300.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016500364300.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Obstetrics & Gynecology, Mayo Clinic, Rochester, Minnesota, USA", 
              "id": "http://www.grid.ac/institutes/grid.66875.3a", 
              "name": [
                "Department of Obstetrics & Gynecology, Mayo Clinic, Rochester, Minnesota, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hokenstad", 
            "givenName": "Alexis N.", 
            "id": "sg:person.010250316243.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010250316243.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA", 
              "id": "http://www.grid.ac/institutes/grid.66875.3a", 
              "name": [
                "Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA", 
                "Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Jun", 
            "id": "sg:person.01023412627.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023412627.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA", 
              "id": "http://www.grid.ac/institutes/grid.66875.3a", 
              "name": [
                "Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA", 
                "Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA", 
                "Division of Rheumatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA", 
                "Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sung", 
            "givenName": "Jaeyun", 
            "id": "sg:person.01136304723.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136304723.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA", 
              "id": "http://www.grid.ac/institutes/grid.66875.3a", 
              "name": [
                "Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jenkins", 
            "givenName": "Gregory D.", 
            "id": "sg:person.01320672562.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320672562.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA", 
              "id": "http://www.grid.ac/institutes/grid.66875.3a", 
              "name": [
                "Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA", 
                "Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chia", 
            "givenName": "Nicholas", 
            "id": "sg:person.01212544443.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212544443.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA", 
              "id": "http://www.grid.ac/institutes/grid.66875.3a", 
              "name": [
                "Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA", 
                "Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nelson", 
            "givenName": "Heidi", 
            "id": "sg:person.0703056235.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703056235.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Gynecologic Surgery, Mayo Clinic, Rochester, MN, USA", 
              "id": "http://www.grid.ac/institutes/grid.66875.3a", 
              "name": [
                "Division of Gynecologic Surgery, Mayo Clinic, Rochester, MN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mariani", 
            "givenName": "Andrea", 
            "id": "sg:person.0710604636.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710604636.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Obstetrics & Gynecology, Mayo Clinic, Rochester, Minnesota, USA", 
              "id": "http://www.grid.ac/institutes/grid.66875.3a", 
              "name": [
                "Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA", 
                "Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA", 
                "Department of Obstetrics & Gynecology, Mayo Clinic, Rochester, Minnesota, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Walther-Antonio", 
            "givenName": "Marina R. S.", 
            "id": "sg:person.01064173222.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064173222.00"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.4056/sigs.2716452", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008505116", 
              "https://doi.org/10.4056/sigs.2716452"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2180-9-226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034780394", 
              "https://doi.org/10.1186/1471-2180-9-226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00535-014-0963-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032321031", 
              "https://doi.org/10.1007/s00535-014-0963-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-00901-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092119323", 
              "https://doi.org/10.1038/s41467-017-00901-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.4056/sigs.3054650", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072177367", 
              "https://doi.org/10.4056/sigs.3054650"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13027-016-0049-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000649502", 
              "https://doi.org/10.1186/s13027-016-0049-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13073-016-0368-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047439451", 
              "https://doi.org/10.1186/s13073-016-0368-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.4056/sigs.3076460", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005968114", 
              "https://doi.org/10.4056/sigs.3076460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002490773", 
              "https://doi.org/10.1038/nbt.3601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12866-016-0665-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034310406", 
              "https://doi.org/10.1186/s12866-016-0665-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1755-8794-3-41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046200955", 
              "https://doi.org/10.1186/1755-8794-3-41"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12-16", 
        "datePublishedReg": "2019-12-16", 
        "description": "Incidence rates for endometrial cancer (EC) are rising, particularly in postmenopausal and obese women. Previously, we showed that the uterine and vaginal microbiome distinguishes patients with EC from those without. Here, we sought to examine the impact of patient factors (such as menopause status, body mass index, and vaginal pH) in the microbiome in the absence of EC and how these might contribute to the microbiome signature in EC. We find that each factor independently alters the microbiome and identified postmenopausal status as the main driver of a polymicrobial network associated with EC (ECbiome). We identified Porphyromas somerae presence as the most predictive microbial marker of EC and we confirm this using targeted qPCR, which could be of use in detecting EC in high-risk, asymptomatic women. Given the established pathogenic behavior of P. somerae and accompanying network in tissue infections and ulcers, future investigation into their role in EC is warranted.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-019-55720-8", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7072411", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2440233", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "keywords": [
          "endometrial cancer", 
          "postmenopausal status", 
          "obese women", 
          "patient factors", 
          "asymptomatic women", 
          "tissue infections", 
          "incidence rate", 
          "microbiome signatures", 
          "cancer microbiome", 
          "vaginal microbiome", 
          "women", 
          "microbiome", 
          "microbial markers", 
          "future investigations", 
          "pathogenic behavior", 
          "postmenopausal", 
          "ulcers", 
          "patients", 
          "cancer", 
          "infection", 
          "factors", 
          "markers", 
          "qPCR", 
          "status", 
          "absence", 
          "role", 
          "rate", 
          "presence", 
          "use", 
          "key factors", 
          "impact", 
          "investigation", 
          "signatures", 
          "main drivers", 
          "behavior", 
          "drivers", 
          "composition", 
          "network"
        ], 
        "name": "Postmenopause as a key factor in the composition of the Endometrial Cancer Microbiome (ECbiome)", 
        "pagination": "19213", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1123433155"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-019-55720-8"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "31844128"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-019-55720-8", 
          "https://app.dimensions.ai/details/publication/pub.1123433155"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_826.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-019-55720-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-55720-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-55720-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-55720-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-55720-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    260 TRIPLES      21 PREDICATES      86 URIs      67 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-019-55720-8 schema:about N01732cd425ba4bc2a2d93bdfec3cee10
    2 N0adf12f143824001aedaf0ce2d3abf43
    3 N14bbc808487047878b1a99b115cc5209
    4 N2552732cf141416891ccf3b97fc7c998
    5 N3681d9402e4e48acad773bfd574196f2
    6 N54aa1b79a3b84664bb4898902bd4ee78
    7 Nbe580eb037dd43fd87ceff56901d9008
    8 Nc7ce67f243da495d9c186c58f5e013df
    9 Nca4504cfaadb43e093db0dd2ef3c53a6
    10 Nebb582dc249c4dc992507aecceab33ca
    11 Nf16b89ce0979496a9cba2a84daafe631
    12 Nf56a7f03a7df43c8a3cc2ad6e988098d
    13 anzsrc-for:11
    14 anzsrc-for:1112
    15 schema:author Nefa23e9647284d1d9b979a5e39e3a09f
    16 schema:citation sg:pub.10.1007/s00535-014-0963-x
    17 sg:pub.10.1038/nbt.3601
    18 sg:pub.10.1038/s41467-017-00901-0
    19 sg:pub.10.1186/1471-2180-9-226
    20 sg:pub.10.1186/1755-8794-3-41
    21 sg:pub.10.1186/s12866-016-0665-z
    22 sg:pub.10.1186/s13027-016-0049-x
    23 sg:pub.10.1186/s13073-016-0368-y
    24 sg:pub.10.4056/sigs.2716452
    25 sg:pub.10.4056/sigs.3054650
    26 sg:pub.10.4056/sigs.3076460
    27 schema:datePublished 2019-12-16
    28 schema:datePublishedReg 2019-12-16
    29 schema:description Incidence rates for endometrial cancer (EC) are rising, particularly in postmenopausal and obese women. Previously, we showed that the uterine and vaginal microbiome distinguishes patients with EC from those without. Here, we sought to examine the impact of patient factors (such as menopause status, body mass index, and vaginal pH) in the microbiome in the absence of EC and how these might contribute to the microbiome signature in EC. We find that each factor independently alters the microbiome and identified postmenopausal status as the main driver of a polymicrobial network associated with EC (ECbiome). We identified Porphyromas somerae presence as the most predictive microbial marker of EC and we confirm this using targeted qPCR, which could be of use in detecting EC in high-risk, asymptomatic women. Given the established pathogenic behavior of P. somerae and accompanying network in tissue infections and ulcers, future investigation into their role in EC is warranted.
    30 schema:genre article
    31 schema:isAccessibleForFree true
    32 schema:isPartOf N665f71b1988d4de5b77ce0907f943e7a
    33 Nea6c501c09a846979449611735f86f8a
    34 sg:journal.1045337
    35 schema:keywords absence
    36 asymptomatic women
    37 behavior
    38 cancer
    39 cancer microbiome
    40 composition
    41 drivers
    42 endometrial cancer
    43 factors
    44 future investigations
    45 impact
    46 incidence rate
    47 infection
    48 investigation
    49 key factors
    50 main drivers
    51 markers
    52 microbial markers
    53 microbiome
    54 microbiome signatures
    55 network
    56 obese women
    57 pathogenic behavior
    58 patient factors
    59 patients
    60 postmenopausal
    61 postmenopausal status
    62 presence
    63 qPCR
    64 rate
    65 role
    66 signatures
    67 status
    68 tissue infections
    69 ulcers
    70 use
    71 vaginal microbiome
    72 women
    73 schema:name Postmenopause as a key factor in the composition of the Endometrial Cancer Microbiome (ECbiome)
    74 schema:pagination 19213
    75 schema:productId N07fef9225e1142479f78dcd4d95e6000
    76 N443c1ebb83814705bb59c6ef824a6fc8
    77 Ndeb2251e9f4f4de58c0c1bb917d96cbc
    78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123433155
    79 https://doi.org/10.1038/s41598-019-55720-8
    80 schema:sdDatePublished 2022-09-02T16:03
    81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    82 schema:sdPublisher N2df04275a3cb49fe88474897c86f3100
    83 schema:url https://doi.org/10.1038/s41598-019-55720-8
    84 sgo:license sg:explorer/license/
    85 sgo:sdDataset articles
    86 rdf:type schema:ScholarlyArticle
    87 N01732cd425ba4bc2a2d93bdfec3cee10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name Female
    89 rdf:type schema:DefinedTerm
    90 N07fef9225e1142479f78dcd4d95e6000 schema:name pubmed_id
    91 schema:value 31844128
    92 rdf:type schema:PropertyValue
    93 N0a3ca61da8e34cda9d6c4f5bc444cc53 rdf:first sg:person.010250316243.88
    94 rdf:rest N61ad3b4aa8264fdfb4d37fe1237f46af
    95 N0adf12f143824001aedaf0ce2d3abf43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Vagina
    97 rdf:type schema:DefinedTerm
    98 N14bbc808487047878b1a99b115cc5209 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Microbiota
    100 rdf:type schema:DefinedTerm
    101 N2552732cf141416891ccf3b97fc7c998 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Risk Factors
    103 rdf:type schema:DefinedTerm
    104 N2df04275a3cb49fe88474897c86f3100 schema:name Springer Nature - SN SciGraph project
    105 rdf:type schema:Organization
    106 N3681d9402e4e48acad773bfd574196f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Humans
    108 rdf:type schema:DefinedTerm
    109 N443c1ebb83814705bb59c6ef824a6fc8 schema:name doi
    110 schema:value 10.1038/s41598-019-55720-8
    111 rdf:type schema:PropertyValue
    112 N47d96643d2bf49769e6dac008ba36270 rdf:first sg:person.01136304723.78
    113 rdf:rest N5290231471e74ab5a525da0f1972c0ec
    114 N5290231471e74ab5a525da0f1972c0ec rdf:first sg:person.01320672562.52
    115 rdf:rest Nb113337349fe4f42970312e310707db5
    116 N54aa1b79a3b84664bb4898902bd4ee78 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Uterus
    118 rdf:type schema:DefinedTerm
    119 N61ad3b4aa8264fdfb4d37fe1237f46af rdf:first sg:person.01023412627.52
    120 rdf:rest N47d96643d2bf49769e6dac008ba36270
    121 N665f71b1988d4de5b77ce0907f943e7a schema:issueNumber 1
    122 rdf:type schema:PublicationIssue
    123 N6e0166383d83444fa6e3c5bcf975d91d rdf:first sg:person.0710604636.30
    124 rdf:rest Nbbded5224dc54cb78cd5fe2663e2ea59
    125 Nb113337349fe4f42970312e310707db5 rdf:first sg:person.01212544443.79
    126 rdf:rest Nd0d3e714be3a440eac03cd89c26bccdd
    127 Nbbded5224dc54cb78cd5fe2663e2ea59 rdf:first sg:person.01064173222.00
    128 rdf:rest rdf:nil
    129 Nbe580eb037dd43fd87ceff56901d9008 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Body Mass Index
    131 rdf:type schema:DefinedTerm
    132 Nc7ce67f243da495d9c186c58f5e013df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Endometrial Neoplasms
    134 rdf:type schema:DefinedTerm
    135 Nca4504cfaadb43e093db0dd2ef3c53a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Postmenopause
    137 rdf:type schema:DefinedTerm
    138 Nd0d3e714be3a440eac03cd89c26bccdd rdf:first sg:person.0703056235.52
    139 rdf:rest N6e0166383d83444fa6e3c5bcf975d91d
    140 Ndeb2251e9f4f4de58c0c1bb917d96cbc schema:name dimensions_id
    141 schema:value pub.1123433155
    142 rdf:type schema:PropertyValue
    143 Nea6c501c09a846979449611735f86f8a schema:volumeNumber 9
    144 rdf:type schema:PublicationVolume
    145 Nebb582dc249c4dc992507aecceab33ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Porphyromonas
    147 rdf:type schema:DefinedTerm
    148 Nefa23e9647284d1d9b979a5e39e3a09f rdf:first sg:person.016500364300.03
    149 rdf:rest N0a3ca61da8e34cda9d6c4f5bc444cc53
    150 Nf16b89ce0979496a9cba2a84daafe631 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Endometrium
    152 rdf:type schema:DefinedTerm
    153 Nf56a7f03a7df43c8a3cc2ad6e988098d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Middle Aged
    155 rdf:type schema:DefinedTerm
    156 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    157 schema:name Medical and Health Sciences
    158 rdf:type schema:DefinedTerm
    159 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    160 schema:name Oncology and Carcinogenesis
    161 rdf:type schema:DefinedTerm
    162 sg:grant.2440233 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-55720-8
    163 rdf:type schema:MonetaryGrant
    164 sg:grant.7072411 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-55720-8
    165 rdf:type schema:MonetaryGrant
    166 sg:journal.1045337 schema:issn 2045-2322
    167 schema:name Scientific Reports
    168 schema:publisher Springer Nature
    169 rdf:type schema:Periodical
    170 sg:person.01023412627.52 schema:affiliation grid-institutes:grid.66875.3a
    171 schema:familyName Chen
    172 schema:givenName Jun
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023412627.52
    174 rdf:type schema:Person
    175 sg:person.010250316243.88 schema:affiliation grid-institutes:grid.66875.3a
    176 schema:familyName Hokenstad
    177 schema:givenName Alexis N.
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010250316243.88
    179 rdf:type schema:Person
    180 sg:person.01064173222.00 schema:affiliation grid-institutes:grid.66875.3a
    181 schema:familyName Walther-Antonio
    182 schema:givenName Marina R. S.
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064173222.00
    184 rdf:type schema:Person
    185 sg:person.01136304723.78 schema:affiliation grid-institutes:grid.66875.3a
    186 schema:familyName Sung
    187 schema:givenName Jaeyun
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136304723.78
    189 rdf:type schema:Person
    190 sg:person.01212544443.79 schema:affiliation grid-institutes:grid.66875.3a
    191 schema:familyName Chia
    192 schema:givenName Nicholas
    193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212544443.79
    194 rdf:type schema:Person
    195 sg:person.01320672562.52 schema:affiliation grid-institutes:grid.66875.3a
    196 schema:familyName Jenkins
    197 schema:givenName Gregory D.
    198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320672562.52
    199 rdf:type schema:Person
    200 sg:person.016500364300.03 schema:affiliation grid-institutes:grid.66875.3a
    201 schema:familyName Walsh
    202 schema:givenName Dana M.
    203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016500364300.03
    204 rdf:type schema:Person
    205 sg:person.0703056235.52 schema:affiliation grid-institutes:grid.66875.3a
    206 schema:familyName Nelson
    207 schema:givenName Heidi
    208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703056235.52
    209 rdf:type schema:Person
    210 sg:person.0710604636.30 schema:affiliation grid-institutes:grid.66875.3a
    211 schema:familyName Mariani
    212 schema:givenName Andrea
    213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710604636.30
    214 rdf:type schema:Person
    215 sg:pub.10.1007/s00535-014-0963-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032321031
    216 https://doi.org/10.1007/s00535-014-0963-x
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/nbt.3601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002490773
    219 https://doi.org/10.1038/nbt.3601
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/s41467-017-00901-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092119323
    222 https://doi.org/10.1038/s41467-017-00901-0
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1186/1471-2180-9-226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034780394
    225 https://doi.org/10.1186/1471-2180-9-226
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1186/1755-8794-3-41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046200955
    228 https://doi.org/10.1186/1755-8794-3-41
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1186/s12866-016-0665-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1034310406
    231 https://doi.org/10.1186/s12866-016-0665-z
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1186/s13027-016-0049-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000649502
    234 https://doi.org/10.1186/s13027-016-0049-x
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1186/s13073-016-0368-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1047439451
    237 https://doi.org/10.1186/s13073-016-0368-y
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.4056/sigs.2716452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008505116
    240 https://doi.org/10.4056/sigs.2716452
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.4056/sigs.3054650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072177367
    243 https://doi.org/10.4056/sigs.3054650
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.4056/sigs.3076460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005968114
    246 https://doi.org/10.4056/sigs.3076460
    247 rdf:type schema:CreativeWork
    248 grid-institutes:grid.66875.3a schema:alternateName Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
    249 Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
    250 Department of Obstetrics & Gynecology, Mayo Clinic, Rochester, Minnesota, USA
    251 Division of Gynecologic Surgery, Mayo Clinic, Rochester, MN, USA
    252 Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
    253 schema:name Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
    254 Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
    255 Department of Obstetrics & Gynecology, Mayo Clinic, Rochester, Minnesota, USA
    256 Division of Gynecologic Surgery, Mayo Clinic, Rochester, MN, USA
    257 Division of Rheumatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
    258 Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
    259 Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
    260 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...